MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpm2g Structured version   Visualization version   GIF version

Theorem elpm2g 8840
Description: The predicate "is a partial function". (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2g ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))

Proof of Theorem elpm2g
StepHypRef Expression
1 elpmg 8839 . 2 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐹𝐹 ⊆ (𝐵 × 𝐴))))
2 funssxp 6746 . 2 ((Fun 𝐹𝐹 ⊆ (𝐵 × 𝐴)) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
31, 2bitrdi 286 1 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wss 3948   × cxp 5674  dom cdm 5676  Fun wfun 6537  wf 6539  (class class class)co 7411  pm cpm 8823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-pm 8825
This theorem is referenced by:  elpm2r  8841  elpmi  8842  elpm2  8870  lmcnp  23028  cmetcaulem  25029  mbfres  25385  dvbsss  25643  perfdvf  25644  dvnff  25664  dvnf  25668  dvnbss  25669  dvnadd  25670  cpnord  25676  mptelpm  44174  dvnprodlem3  44963  etransclem2  45251
  Copyright terms: Public domain W3C validator