| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpm2g | Structured version Visualization version GIF version | ||
| Description: The predicate "is a partial function". (Contributed by NM, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| elpm2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpmg 8762 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴)))) | |
| 2 | funssxp 6674 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴)) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 × cxp 5609 dom cdm 5611 Fun wfun 6470 ⟶wf 6472 (class class class)co 7341 ↑pm cpm 8746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-pm 8748 |
| This theorem is referenced by: elpm2r 8764 elpmi 8765 elpm2 8793 lmcnp 23214 cmetcaulem 25210 mbfres 25567 dvbsss 25825 perfdvf 25826 dvnff 25847 dvnf 25851 dvnbss 25852 dvnadd 25853 cpnord 25859 mptelpm 45213 dvnprodlem3 45986 etransclem2 46274 |
| Copyright terms: Public domain | W3C validator |