MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpm2g Structured version   Visualization version   GIF version

Theorem elpm2g 8821
Description: The predicate "is a partial function". (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2g ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))

Proof of Theorem elpm2g
StepHypRef Expression
1 elpmg 8820 . 2 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐹𝐹 ⊆ (𝐵 × 𝐴))))
2 funssxp 6733 . 2 ((Fun 𝐹𝐹 ⊆ (𝐵 × 𝐴)) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
31, 2bitrdi 286 1 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wss 3944   × cxp 5667  dom cdm 5669  Fun wfun 6526  wf 6528  (class class class)co 7393  pm cpm 8804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-pm 8806
This theorem is referenced by:  elpm2r  8822  elpmi  8823  elpm2  8851  lmcnp  22737  cmetcaulem  24734  mbfres  25090  dvbsss  25348  perfdvf  25349  dvnff  25369  dvnf  25373  dvnbss  25374  dvnadd  25375  cpnord  25381  mptelpm  43643  dvnprodlem3  44437  etransclem2  44725
  Copyright terms: Public domain W3C validator