MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpm2g Structured version   Visualization version   GIF version

Theorem elpm2g 8785
Description: The predicate "is a partial function". (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2g ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))

Proof of Theorem elpm2g
StepHypRef Expression
1 elpmg 8784 . 2 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐹𝐹 ⊆ (𝐵 × 𝐴))))
2 funssxp 6698 . 2 ((Fun 𝐹𝐹 ⊆ (𝐵 × 𝐴)) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
31, 2bitrdi 287 1 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wss 3911   × cxp 5632  dom cdm 5634  Fun wfun 6491  wf 6493  (class class class)co 7358  pm cpm 8769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-pm 8771
This theorem is referenced by:  elpm2r  8786  elpmi  8787  elpm2  8815  lmcnp  22671  cmetcaulem  24668  mbfres  25024  dvbsss  25282  perfdvf  25283  dvnff  25303  dvnf  25307  dvnbss  25308  dvnadd  25309  cpnord  25315  mptelpm  43481  dvnprodlem3  44275  etransclem2  44563
  Copyright terms: Public domain W3C validator