Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpm2g | Structured version Visualization version GIF version |
Description: The predicate "is a partial function." (Contributed by NM, 31-Dec-2013.) |
Ref | Expression |
---|---|
elpm2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpmg 8453 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴)))) | |
2 | funssxp 6533 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴)) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | |
3 | 1, 2 | bitrdi 290 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2114 ⊆ wss 3843 × cxp 5523 dom cdm 5525 Fun wfun 6333 ⟶wf 6335 (class class class)co 7170 ↑pm cpm 8438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-pm 8440 |
This theorem is referenced by: elpm2r 8455 elpmi 8456 elpm2 8484 lmcnp 22055 cmetcaulem 24040 mbfres 24396 dvbsss 24654 perfdvf 24655 dvnff 24675 dvnf 24679 dvnbss 24680 dvnadd 24681 cpnord 24687 mptelpm 42250 dvnprodlem3 43031 etransclem2 43319 |
Copyright terms: Public domain | W3C validator |