![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpm2g | Structured version Visualization version GIF version |
Description: The predicate "is a partial function." (Contributed by NM, 31-Dec-2013.) |
Ref | Expression |
---|---|
elpm2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpmg 8143 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴)))) | |
2 | funssxp 6302 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴)) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | |
3 | 1, 2 | syl6bb 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2164 ⊆ wss 3798 × cxp 5344 dom cdm 5346 Fun wfun 6121 ⟶wf 6123 (class class class)co 6910 ↑pm cpm 8128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-pm 8130 |
This theorem is referenced by: elpm2r 8145 elpmi 8146 elpm2 8159 lmcnp 21486 cmetcaulem 23463 mbfres 23817 dvbsss 24072 perfdvf 24073 dvnff 24092 dvnf 24096 dvnbss 24097 dvnadd 24098 cpnord 24104 mptelpm 40165 dvnprodlem3 40956 etransclem2 41245 |
Copyright terms: Public domain | W3C validator |