| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpm2g | Structured version Visualization version GIF version | ||
| Description: The predicate "is a partial function". (Contributed by NM, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| elpm2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpmg 8776 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴)))) | |
| 2 | funssxp 6687 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴)) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 × cxp 5619 dom cdm 5621 Fun wfun 6483 ⟶wf 6485 (class class class)co 7355 ↑pm cpm 8760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-pm 8762 |
| This theorem is referenced by: elpm2r 8778 elpmi 8779 elpm2 8808 lmcnp 23239 cmetcaulem 25235 mbfres 25592 dvbsss 25850 perfdvf 25851 dvnff 25872 dvnf 25876 dvnbss 25877 dvnadd 25878 cpnord 25884 mptelpm 45336 dvnprodlem3 46108 etransclem2 46396 |
| Copyright terms: Public domain | W3C validator |