Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem29 Structured version   Visualization version   GIF version

Theorem stoweidlem29 41810
Description: When the hypothesis for the extreme value theorem hold, then the inf of the range of the function belongs to the range, it is real and it a lower bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
stoweidlem29.1 𝑡𝐹
stoweidlem29.2 𝑡𝜑
stoweidlem29.3 𝑇 = 𝐽
stoweidlem29.4 𝐾 = (topGen‘ran (,))
stoweidlem29.5 (𝜑𝐽 ∈ Comp)
stoweidlem29.6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
stoweidlem29.7 (𝜑𝑇 ≠ ∅)
Assertion
Ref Expression
stoweidlem29 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
Distinct variable groups:   𝑡,𝑇   𝑡,𝐽   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑡)

Proof of Theorem stoweidlem29
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem29.4 . . . . . 6 𝐾 = (topGen‘ran (,))
2 stoweidlem29.3 . . . . . 6 𝑇 = 𝐽
3 eqid 2793 . . . . . 6 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 stoweidlem29.6 . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 40773 . . . . 5 (𝜑𝐹:𝑇⟶ℝ)
6 df-f 6221 . . . . 5 (𝐹:𝑇⟶ℝ ↔ (𝐹 Fn 𝑇 ∧ ran 𝐹 ⊆ ℝ))
75, 6sylib 219 . . . 4 (𝜑 → (𝐹 Fn 𝑇 ∧ ran 𝐹 ⊆ ℝ))
87simprd 496 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
97simpld 495 . . . . . . . . 9 (𝜑𝐹 Fn 𝑇)
10 fnfun 6315 . . . . . . . . 9 (𝐹 Fn 𝑇 → Fun 𝐹)
119, 10syl 17 . . . . . . . 8 (𝜑 → Fun 𝐹)
1211adantr 481 . . . . . . 7 ((𝜑𝑠𝑇) → Fun 𝐹)
135fdmd 6383 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑇)
1413eqcomd 2799 . . . . . . . . 9 (𝜑𝑇 = dom 𝐹)
1514eleq2d 2866 . . . . . . . 8 (𝜑 → (𝑠𝑇𝑠 ∈ dom 𝐹))
1615biimpa 477 . . . . . . 7 ((𝜑𝑠𝑇) → 𝑠 ∈ dom 𝐹)
17 fvelrn 6700 . . . . . . 7 ((Fun 𝐹𝑠 ∈ dom 𝐹) → (𝐹𝑠) ∈ ran 𝐹)
1812, 16, 17syl2anc 584 . . . . . 6 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ran 𝐹)
19 stoweidlem29.1 . . . . . . . . . 10 𝑡𝐹
20 nfcv 2947 . . . . . . . . . 10 𝑡𝑠
2119, 20nffv 6540 . . . . . . . . 9 𝑡(𝐹𝑠)
2221nfeq2 2962 . . . . . . . 8 𝑡 𝑥 = (𝐹𝑠)
23 breq1 4959 . . . . . . . 8 (𝑥 = (𝐹𝑠) → (𝑥 ≤ (𝐹𝑡) ↔ (𝐹𝑠) ≤ (𝐹𝑡)))
2422, 23ralbid 3193 . . . . . . 7 (𝑥 = (𝐹𝑠) → (∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) ↔ ∀𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡)))
2524rspcev 3554 . . . . . 6 (((𝐹𝑠) ∈ ran 𝐹 ∧ ∀𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡)) → ∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡))
2618, 25sylan 580 . . . . 5 (((𝜑𝑠𝑇) ∧ ∀𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡)) → ∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡))
27 nfcv 2947 . . . . . 6 𝑠𝐹
28 nfcv 2947 . . . . . 6 𝑠𝑇
29 nfcv 2947 . . . . . 6 𝑡𝑇
30 stoweidlem29.5 . . . . . 6 (𝜑𝐽 ∈ Comp)
31 stoweidlem29.7 . . . . . 6 (𝜑𝑇 ≠ ∅)
3227, 19, 28, 29, 2, 1, 30, 4, 31evth2f 40763 . . . . 5 (𝜑 → ∃𝑠𝑇𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡))
3326, 32r19.29a 3249 . . . 4 (𝜑 → ∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡))
34 nfv 1890 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡))
35 simpr 485 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
369ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → 𝐹 Fn 𝑇)
37 nfcv 2947 . . . . . . . . . . . 12 𝑡𝑦
3829, 37, 19fvelrnbf 40766 . . . . . . . . . . 11 (𝐹 Fn 𝑇 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑡𝑇 (𝐹𝑡) = 𝑦))
3936, 38syl 17 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑡𝑇 (𝐹𝑡) = 𝑦))
4035, 39mpbid 233 . . . . . . . . 9 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑡𝑇 (𝐹𝑡) = 𝑦)
41 stoweidlem29.2 . . . . . . . . . . . 12 𝑡𝜑
42 nfra1 3184 . . . . . . . . . . . 12 𝑡𝑡𝑇 𝑥 ≤ (𝐹𝑡)
4341, 42nfan 1879 . . . . . . . . . . 11 𝑡(𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡))
4419nfrn 5698 . . . . . . . . . . . 12 𝑡ran 𝐹
4544nfcri 2941 . . . . . . . . . . 11 𝑡 𝑦 ∈ ran 𝐹
4643, 45nfan 1879 . . . . . . . . . 10 𝑡((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹)
47 nfv 1890 . . . . . . . . . 10 𝑡 𝑥𝑦
48 rspa 3171 . . . . . . . . . . . . 13 ((∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) ∧ 𝑡𝑇) → 𝑥 ≤ (𝐹𝑡))
49 breq2 4960 . . . . . . . . . . . . 13 ((𝐹𝑡) = 𝑦 → (𝑥 ≤ (𝐹𝑡) ↔ 𝑥𝑦))
5048, 49syl5ibcom 246 . . . . . . . . . . . 12 ((∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) ∧ 𝑡𝑇) → ((𝐹𝑡) = 𝑦𝑥𝑦))
5150ex 413 . . . . . . . . . . 11 (∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) → (𝑡𝑇 → ((𝐹𝑡) = 𝑦𝑥𝑦)))
5251ad2antlr 723 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → (𝑡𝑇 → ((𝐹𝑡) = 𝑦𝑥𝑦)))
5346, 47, 52rexlimd 3275 . . . . . . . . 9 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑡𝑇 (𝐹𝑡) = 𝑦𝑥𝑦))
5440, 53mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥𝑦)
5554ex 413 . . . . . . 7 ((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) → (𝑦 ∈ ran 𝐹𝑥𝑦))
5634, 55ralrimi 3181 . . . . . 6 ((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
5756ex 413 . . . . 5 (𝜑 → (∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
5857reximdv 3233 . . . 4 (𝜑 → (∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦))
5933, 58mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦)
60 lbinfcl 11432 . . 3 ((ran 𝐹 ⊆ ℝ ∧ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
618, 59, 60syl2anc 584 . 2 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
628, 61sseldd 3885 . 2 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
638adantr 481 . . . . 5 ((𝜑𝑡𝑇) → ran 𝐹 ⊆ ℝ)
6459adantr 481 . . . . 5 ((𝜑𝑡𝑇) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦)
65 dffn3 6385 . . . . . . 7 (𝐹 Fn 𝑇𝐹:𝑇⟶ran 𝐹)
669, 65sylib 219 . . . . . 6 (𝜑𝐹:𝑇⟶ran 𝐹)
6766ffvelrnda 6707 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ran 𝐹)
68 lbinfle 11433 . . . . 5 ((ran 𝐹 ⊆ ℝ ∧ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦 ∧ (𝐹𝑡) ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
6963, 64, 67, 68syl3anc 1362 . . . 4 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
7069ex 413 . . 3 (𝜑 → (𝑡𝑇 → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
7141, 70ralrimi 3181 . 2 (𝜑 → ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
7261, 62, 713jca 1119 1 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wnf 1763  wcel 2079  wnfc 2931  wne 2982  wral 3103  wrex 3104  wss 3854  c0 4206   cuni 4739   class class class wbr 4956  dom cdm 5435  ran crn 5436  Fun wfun 6211   Fn wfn 6212  wf 6213  cfv 6217  (class class class)co 7007  infcinf 8741  cr 10371   < clt 10510  cle 10511  (,)cioo 12577  topGenctg 16528   Cn ccn 21504  Compccmp 21666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-map 8249  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-icc 12584  df-fz 12732  df-fzo 12873  df-seq 13208  df-exp 13268  df-hash 13529  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-xrs 16592  df-qtop 16597  df-imas 16598  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-submnd 17763  df-mulg 17970  df-cntz 18176  df-cmn 18623  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-cnfld 20216  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cn 21507  df-cnp 21508  df-cmp 21667  df-tx 21842  df-hmeo 22035  df-xms 22601  df-ms 22602  df-tms 22603
This theorem is referenced by:  stoweidlem62  41843
  Copyright terms: Public domain W3C validator