Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem29 Structured version   Visualization version   GIF version

Theorem stoweidlem29 46044
Description: When the hypothesis for the extreme value theorem hold, then the inf of the range of the function belongs to the range, it is real and it a lower bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
stoweidlem29.1 𝑡𝐹
stoweidlem29.2 𝑡𝜑
stoweidlem29.3 𝑇 = 𝐽
stoweidlem29.4 𝐾 = (topGen‘ran (,))
stoweidlem29.5 (𝜑𝐽 ∈ Comp)
stoweidlem29.6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
stoweidlem29.7 (𝜑𝑇 ≠ ∅)
Assertion
Ref Expression
stoweidlem29 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
Distinct variable groups:   𝑡,𝑇   𝑡,𝐽   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑡)

Proof of Theorem stoweidlem29
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem29.4 . . . . . 6 𝐾 = (topGen‘ran (,))
2 stoweidlem29.3 . . . . . 6 𝑇 = 𝐽
3 eqid 2737 . . . . . 6 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 stoweidlem29.6 . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 45030 . . . . 5 (𝜑𝐹:𝑇⟶ℝ)
6 df-f 6565 . . . . 5 (𝐹:𝑇⟶ℝ ↔ (𝐹 Fn 𝑇 ∧ ran 𝐹 ⊆ ℝ))
75, 6sylib 218 . . . 4 (𝜑 → (𝐹 Fn 𝑇 ∧ ran 𝐹 ⊆ ℝ))
87simprd 495 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
97simpld 494 . . . . . . . . 9 (𝜑𝐹 Fn 𝑇)
10 fnfun 6668 . . . . . . . . 9 (𝐹 Fn 𝑇 → Fun 𝐹)
119, 10syl 17 . . . . . . . 8 (𝜑 → Fun 𝐹)
1211adantr 480 . . . . . . 7 ((𝜑𝑠𝑇) → Fun 𝐹)
135fdmd 6746 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑇)
1413eqcomd 2743 . . . . . . . . 9 (𝜑𝑇 = dom 𝐹)
1514eleq2d 2827 . . . . . . . 8 (𝜑 → (𝑠𝑇𝑠 ∈ dom 𝐹))
1615biimpa 476 . . . . . . 7 ((𝜑𝑠𝑇) → 𝑠 ∈ dom 𝐹)
17 fvelrn 7096 . . . . . . 7 ((Fun 𝐹𝑠 ∈ dom 𝐹) → (𝐹𝑠) ∈ ran 𝐹)
1812, 16, 17syl2anc 584 . . . . . 6 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ran 𝐹)
19 stoweidlem29.1 . . . . . . . . . 10 𝑡𝐹
20 nfcv 2905 . . . . . . . . . 10 𝑡𝑠
2119, 20nffv 6916 . . . . . . . . 9 𝑡(𝐹𝑠)
2221nfeq2 2923 . . . . . . . 8 𝑡 𝑥 = (𝐹𝑠)
23 breq1 5146 . . . . . . . 8 (𝑥 = (𝐹𝑠) → (𝑥 ≤ (𝐹𝑡) ↔ (𝐹𝑠) ≤ (𝐹𝑡)))
2422, 23ralbid 3273 . . . . . . 7 (𝑥 = (𝐹𝑠) → (∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) ↔ ∀𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡)))
2524rspcev 3622 . . . . . 6 (((𝐹𝑠) ∈ ran 𝐹 ∧ ∀𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡)) → ∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡))
2618, 25sylan 580 . . . . 5 (((𝜑𝑠𝑇) ∧ ∀𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡)) → ∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡))
27 nfcv 2905 . . . . . 6 𝑠𝐹
28 nfcv 2905 . . . . . 6 𝑠𝑇
29 nfcv 2905 . . . . . 6 𝑡𝑇
30 stoweidlem29.5 . . . . . 6 (𝜑𝐽 ∈ Comp)
31 stoweidlem29.7 . . . . . 6 (𝜑𝑇 ≠ ∅)
3227, 19, 28, 29, 2, 1, 30, 4, 31evth2f 45020 . . . . 5 (𝜑 → ∃𝑠𝑇𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡))
3326, 32r19.29a 3162 . . . 4 (𝜑 → ∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡))
34 nfv 1914 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡))
35 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
369ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → 𝐹 Fn 𝑇)
37 nfcv 2905 . . . . . . . . . . . 12 𝑡𝑦
3829, 37, 19fvelrnbf 45023 . . . . . . . . . . 11 (𝐹 Fn 𝑇 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑡𝑇 (𝐹𝑡) = 𝑦))
3936, 38syl 17 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑡𝑇 (𝐹𝑡) = 𝑦))
4035, 39mpbid 232 . . . . . . . . 9 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑡𝑇 (𝐹𝑡) = 𝑦)
41 stoweidlem29.2 . . . . . . . . . . . 12 𝑡𝜑
42 nfra1 3284 . . . . . . . . . . . 12 𝑡𝑡𝑇 𝑥 ≤ (𝐹𝑡)
4341, 42nfan 1899 . . . . . . . . . . 11 𝑡(𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡))
4419nfrn 5963 . . . . . . . . . . . 12 𝑡ran 𝐹
4544nfcri 2897 . . . . . . . . . . 11 𝑡 𝑦 ∈ ran 𝐹
4643, 45nfan 1899 . . . . . . . . . 10 𝑡((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹)
47 nfv 1914 . . . . . . . . . 10 𝑡 𝑥𝑦
48 rspa 3248 . . . . . . . . . . . . 13 ((∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) ∧ 𝑡𝑇) → 𝑥 ≤ (𝐹𝑡))
49 breq2 5147 . . . . . . . . . . . . 13 ((𝐹𝑡) = 𝑦 → (𝑥 ≤ (𝐹𝑡) ↔ 𝑥𝑦))
5048, 49syl5ibcom 245 . . . . . . . . . . . 12 ((∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) ∧ 𝑡𝑇) → ((𝐹𝑡) = 𝑦𝑥𝑦))
5150ex 412 . . . . . . . . . . 11 (∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) → (𝑡𝑇 → ((𝐹𝑡) = 𝑦𝑥𝑦)))
5251ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → (𝑡𝑇 → ((𝐹𝑡) = 𝑦𝑥𝑦)))
5346, 47, 52rexlimd 3266 . . . . . . . . 9 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑡𝑇 (𝐹𝑡) = 𝑦𝑥𝑦))
5440, 53mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥𝑦)
5554ex 412 . . . . . . 7 ((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) → (𝑦 ∈ ran 𝐹𝑥𝑦))
5634, 55ralrimi 3257 . . . . . 6 ((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
5756ex 412 . . . . 5 (𝜑 → (∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
5857reximdv 3170 . . . 4 (𝜑 → (∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦))
5933, 58mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦)
60 lbinfcl 12222 . . 3 ((ran 𝐹 ⊆ ℝ ∧ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
618, 59, 60syl2anc 584 . 2 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
628, 61sseldd 3984 . 2 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
638adantr 480 . . . . 5 ((𝜑𝑡𝑇) → ran 𝐹 ⊆ ℝ)
6459adantr 480 . . . . 5 ((𝜑𝑡𝑇) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦)
65 dffn3 6748 . . . . . . 7 (𝐹 Fn 𝑇𝐹:𝑇⟶ran 𝐹)
669, 65sylib 218 . . . . . 6 (𝜑𝐹:𝑇⟶ran 𝐹)
6766ffvelcdmda 7104 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ran 𝐹)
68 lbinfle 12223 . . . . 5 ((ran 𝐹 ⊆ ℝ ∧ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦 ∧ (𝐹𝑡) ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
6963, 64, 67, 68syl3anc 1373 . . . 4 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
7069ex 412 . . 3 (𝜑 → (𝑡𝑇 → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
7141, 70ralrimi 3257 . 2 (𝜑 → ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
7261, 62, 713jca 1129 1 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333   cuni 4907   class class class wbr 5143  dom cdm 5685  ran crn 5686  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  infcinf 9481  cr 11154   < clt 11295  cle 11296  (,)cioo 13387  topGenctg 17482   Cn ccn 23232  Compccmp 23394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332
This theorem is referenced by:  stoweidlem62  46077
  Copyright terms: Public domain W3C validator