Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsumcn Structured version   Visualization version   GIF version

Theorem refsumcn 44968
Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 24908 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsumcn.1 𝑥𝜑
refsumcn.2 𝐾 = (topGen‘ran (,))
refsumcn.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsumcn.4 (𝜑𝐴 ∈ Fin)
refsumcn.5 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsumcn (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝑘,𝑋,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑘)   𝐾(𝑥,𝑘)

Proof of Theorem refsumcn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2 refsumcn.3 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 refsumcn.4 . . . 4 (𝜑𝐴 ∈ Fin)
4 refsumcn.5 . . . . . 6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
5 refsumcn.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
61tgioo2 24839 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
75, 6eqtri 2763 . . . . . . 7 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
87oveq2i 7442 . . . . . 6 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
94, 8eleqtrdi 2849 . . . . 5 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
101cnfldtopon 24819 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . . . 6 ((𝜑𝑘𝐴) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
122adantr 480 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
13 retopon 24800 . . . . . . . . . 10 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
145, 13eqeltri 2835 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℝ)
1514a1i 11 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℝ))
16 cnf2 23273 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℝ)
1712, 15, 4, 16syl3anc 1370 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℝ)
1817frnd 6745 . . . . . 6 ((𝜑𝑘𝐴) → ran (𝑥𝑋𝐵) ⊆ ℝ)
19 ax-resscn 11210 . . . . . . 7 ℝ ⊆ ℂ
2019a1i 11 . . . . . 6 ((𝜑𝑘𝐴) → ℝ ⊆ ℂ)
21 cnrest2 23310 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑋𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
2211, 18, 20, 21syl3anc 1370 . . . . 5 ((𝜑𝑘𝐴) → ((𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
239, 22mpbird 257 . . . 4 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
241, 2, 3, 23fsumcnf 44959 . . 3 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
2510a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
26 refsumcn.1 . . . . . . . . . . 11 𝑥𝜑
273adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → 𝐴 ∈ Fin)
28 simpll 767 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝜑)
29 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑘𝐴)
3028, 29jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → (𝜑𝑘𝐴))
31 simplr 769 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑥𝑋)
32 eqid 2735 . . . . . . . . . . . . . . . . 17 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
3332fmpt 7130 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 𝐵 ∈ ℝ ↔ (𝑥𝑋𝐵):𝑋⟶ℝ)
3417, 33sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℝ)
35 rsp 3245 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 𝐵 ∈ ℝ → (𝑥𝑋𝐵 ∈ ℝ))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℝ))
3730, 31, 36sylc 65 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
3827, 37fsumrecl 15767 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → Σ𝑘𝐴 𝐵 ∈ ℝ)
3938ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋 → Σ𝑘𝐴 𝐵 ∈ ℝ))
4026, 39ralrimi 3255 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 Σ𝑘𝐴 𝐵 ∈ ℝ)
41 eqid 2735 . . . . . . . . . . 11 (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
4241fnmpt 6709 . . . . . . . . . 10 (∀𝑥𝑋 Σ𝑘𝐴 𝐵 ∈ ℝ → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋)
4340, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋)
44 nfcv 2903 . . . . . . . . . 10 𝑥𝑋
45 nfcv 2903 . . . . . . . . . 10 𝑥𝑦
46 nfmpt1 5256 . . . . . . . . . 10 𝑥(𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
4744, 45, 46fvelrnbf 44956 . . . . . . . . 9 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ↔ ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦))
4843, 47syl 17 . . . . . . . 8 (𝜑 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ↔ ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦))
4948biimpa 476 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦)
5046nfrn 5966 . . . . . . . . . 10 𝑥ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
5150nfcri 2895 . . . . . . . . 9 𝑥 𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
5226, 51nfan 1897 . . . . . . . 8 𝑥(𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
53 nfcv 2903 . . . . . . . . 9 𝑥
5453nfcri 2895 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
55 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥𝑋)
5655, 38jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥𝑋 ∧ Σ𝑘𝐴 𝐵 ∈ ℝ))
5741fvmpt2 7027 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ Σ𝑘𝐴 𝐵 ∈ ℝ) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
59583adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
60 simp3 1137 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦)
6159, 60eqtr3d 2777 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → Σ𝑘𝐴 𝐵 = 𝑦)
62383adant3 1131 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → Σ𝑘𝐴 𝐵 ∈ ℝ)
6361, 62eqeltrrd 2840 . . . . . . . . . 10 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → 𝑦 ∈ ℝ)
64633adant1r 1176 . . . . . . . . 9 (((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) ∧ 𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → 𝑦 ∈ ℝ)
65643exp 1118 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → (𝑥𝑋 → (((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦𝑦 ∈ ℝ)))
6652, 54, 65rexlimd 3264 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → (∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦𝑦 ∈ ℝ))
6749, 66mpd 15 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → 𝑦 ∈ ℝ)
6867ex 412 . . . . 5 (𝜑 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) → 𝑦 ∈ ℝ))
6968ssrdv 4001 . . . 4 (𝜑 → ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ⊆ ℝ)
7019a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
71 cnrest2 23310 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
7225, 69, 70, 71syl3anc 1370 . . 3 (𝜑 → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
7324, 72mpbid 232 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
7473, 8eleqtrrdi 2850 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wnf 1780  wcel 2106  wral 3059  wrex 3068  wss 3963  cmpt 5231  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  (,)cioo 13384  Σcsu 15719  t crest 17467  TopOpenctopn 17468  topGenctg 17484  fldccnfld 21382  TopOnctopon 22932   Cn ccn 23248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348
This theorem is referenced by:  refsum2cnlem1  44975
  Copyright terms: Public domain W3C validator