Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsumcn Structured version   Visualization version   GIF version

Theorem refsumcn 41164
Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 23405 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsumcn.1 𝑥𝜑
refsumcn.2 𝐾 = (topGen‘ran (,))
refsumcn.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsumcn.4 (𝜑𝐴 ∈ Fin)
refsumcn.5 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsumcn (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝑘,𝑋,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑘)   𝐾(𝑥,𝑘)

Proof of Theorem refsumcn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2 refsumcn.3 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 refsumcn.4 . . . 4 (𝜑𝐴 ∈ Fin)
4 refsumcn.5 . . . . . 6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
5 refsumcn.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
61tgioo2 23338 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
75, 6eqtri 2841 . . . . . . 7 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
87oveq2i 7156 . . . . . 6 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
94, 8eleqtrdi 2920 . . . . 5 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
101cnfldtopon 23318 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . . . 6 ((𝜑𝑘𝐴) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
122adantr 481 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
13 retopon 23299 . . . . . . . . . 10 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
145, 13eqeltri 2906 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℝ)
1514a1i 11 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℝ))
16 cnf2 21785 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℝ)
1712, 15, 4, 16syl3anc 1363 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℝ)
1817frnd 6514 . . . . . 6 ((𝜑𝑘𝐴) → ran (𝑥𝑋𝐵) ⊆ ℝ)
19 ax-resscn 10582 . . . . . . 7 ℝ ⊆ ℂ
2019a1i 11 . . . . . 6 ((𝜑𝑘𝐴) → ℝ ⊆ ℂ)
21 cnrest2 21822 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑋𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
2211, 18, 20, 21syl3anc 1363 . . . . 5 ((𝜑𝑘𝐴) → ((𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
239, 22mpbird 258 . . . 4 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
241, 2, 3, 23fsumcnf 41155 . . 3 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
2510a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
26 refsumcn.1 . . . . . . . . . . 11 𝑥𝜑
273adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → 𝐴 ∈ Fin)
28 simpll 763 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝜑)
29 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑘𝐴)
3028, 29jca 512 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → (𝜑𝑘𝐴))
31 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑥𝑋)
32 eqid 2818 . . . . . . . . . . . . . . . . 17 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
3332fmpt 6866 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 𝐵 ∈ ℝ ↔ (𝑥𝑋𝐵):𝑋⟶ℝ)
3417, 33sylibr 235 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℝ)
35 rsp 3202 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 𝐵 ∈ ℝ → (𝑥𝑋𝐵 ∈ ℝ))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℝ))
3730, 31, 36sylc 65 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
3827, 37fsumrecl 15079 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → Σ𝑘𝐴 𝐵 ∈ ℝ)
3938ex 413 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋 → Σ𝑘𝐴 𝐵 ∈ ℝ))
4026, 39ralrimi 3213 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 Σ𝑘𝐴 𝐵 ∈ ℝ)
41 eqid 2818 . . . . . . . . . . 11 (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
4241fnmpt 6481 . . . . . . . . . 10 (∀𝑥𝑋 Σ𝑘𝐴 𝐵 ∈ ℝ → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋)
4340, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋)
44 nfcv 2974 . . . . . . . . . 10 𝑥𝑋
45 nfcv 2974 . . . . . . . . . 10 𝑥𝑦
46 nfmpt1 5155 . . . . . . . . . 10 𝑥(𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
4744, 45, 46fvelrnbf 41152 . . . . . . . . 9 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ↔ ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦))
4843, 47syl 17 . . . . . . . 8 (𝜑 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ↔ ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦))
4948biimpa 477 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦)
5046nfrn 5817 . . . . . . . . . 10 𝑥ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
5150nfcri 2968 . . . . . . . . 9 𝑥 𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
5226, 51nfan 1891 . . . . . . . 8 𝑥(𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
53 nfcv 2974 . . . . . . . . 9 𝑥
5453nfcri 2968 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
55 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥𝑋)
5655, 38jca 512 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥𝑋 ∧ Σ𝑘𝐴 𝐵 ∈ ℝ))
5741fvmpt2 6771 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ Σ𝑘𝐴 𝐵 ∈ ℝ) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
59583adant3 1124 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
60 simp3 1130 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦)
6159, 60eqtr3d 2855 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → Σ𝑘𝐴 𝐵 = 𝑦)
62383adant3 1124 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → Σ𝑘𝐴 𝐵 ∈ ℝ)
6361, 62eqeltrrd 2911 . . . . . . . . . 10 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → 𝑦 ∈ ℝ)
64633adant1r 1169 . . . . . . . . 9 (((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) ∧ 𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → 𝑦 ∈ ℝ)
65643exp 1111 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → (𝑥𝑋 → (((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦𝑦 ∈ ℝ)))
6652, 54, 65rexlimd 3314 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → (∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦𝑦 ∈ ℝ))
6749, 66mpd 15 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → 𝑦 ∈ ℝ)
6867ex 413 . . . . 5 (𝜑 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) → 𝑦 ∈ ℝ))
6968ssrdv 3970 . . . 4 (𝜑 → ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ⊆ ℝ)
7019a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
71 cnrest2 21822 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
7225, 69, 70, 71syl3anc 1363 . . 3 (𝜑 → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
7324, 72mpbid 233 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
7473, 8eleqtrrdi 2921 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wnf 1775  wcel 2105  wral 3135  wrex 3136  wss 3933  cmpt 5137  ran crn 5549   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  Fincfn 8497  cc 10523  cr 10524  (,)cioo 12726  Σcsu 15030  t crest 16682  TopOpenctopn 16683  topGenctg 16699  fldccnfld 20473  TopOnctopon 21446   Cn ccn 21760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cn 21763  df-cnp 21764  df-tx 22098  df-hmeo 22291  df-xms 22857  df-ms 22858  df-tms 22859
This theorem is referenced by:  refsum2cnlem1  41171
  Copyright terms: Public domain W3C validator