Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsumcn Structured version   Visualization version   GIF version

Theorem refsumcn 45021
Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 24817 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsumcn.1 𝑥𝜑
refsumcn.2 𝐾 = (topGen‘ran (,))
refsumcn.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsumcn.4 (𝜑𝐴 ∈ Fin)
refsumcn.5 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsumcn (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝑘,𝑋,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑘)   𝐾(𝑥,𝑘)

Proof of Theorem refsumcn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2 refsumcn.3 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 refsumcn.4 . . . 4 (𝜑𝐴 ∈ Fin)
4 refsumcn.5 . . . . . 6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
5 refsumcn.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
6 tgioo4 24749 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
75, 6eqtri 2759 . . . . . . 7 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
87oveq2i 7421 . . . . . 6 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
94, 8eleqtrdi 2845 . . . . 5 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
101cnfldtopon 24726 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . . . 6 ((𝜑𝑘𝐴) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
122adantr 480 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
13 retopon 24707 . . . . . . . . . 10 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
145, 13eqeltri 2831 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℝ)
1514a1i 11 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℝ))
16 cnf2 23192 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℝ)
1712, 15, 4, 16syl3anc 1373 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℝ)
1817frnd 6719 . . . . . 6 ((𝜑𝑘𝐴) → ran (𝑥𝑋𝐵) ⊆ ℝ)
19 ax-resscn 11191 . . . . . . 7 ℝ ⊆ ℂ
2019a1i 11 . . . . . 6 ((𝜑𝑘𝐴) → ℝ ⊆ ℂ)
21 cnrest2 23229 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑋𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
2211, 18, 20, 21syl3anc 1373 . . . . 5 ((𝜑𝑘𝐴) → ((𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
239, 22mpbird 257 . . . 4 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
241, 2, 3, 23fsumcnf 45012 . . 3 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
2510a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
26 refsumcn.1 . . . . . . . . . . 11 𝑥𝜑
273adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → 𝐴 ∈ Fin)
28 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝜑)
29 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑘𝐴)
3028, 29jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → (𝜑𝑘𝐴))
31 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑥𝑋)
32 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
3332fmpt 7105 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 𝐵 ∈ ℝ ↔ (𝑥𝑋𝐵):𝑋⟶ℝ)
3417, 33sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℝ)
35 rsp 3234 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 𝐵 ∈ ℝ → (𝑥𝑋𝐵 ∈ ℝ))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℝ))
3730, 31, 36sylc 65 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
3827, 37fsumrecl 15755 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → Σ𝑘𝐴 𝐵 ∈ ℝ)
3938ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋 → Σ𝑘𝐴 𝐵 ∈ ℝ))
4026, 39ralrimi 3244 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 Σ𝑘𝐴 𝐵 ∈ ℝ)
41 eqid 2736 . . . . . . . . . . 11 (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
4241fnmpt 6683 . . . . . . . . . 10 (∀𝑥𝑋 Σ𝑘𝐴 𝐵 ∈ ℝ → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋)
4340, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋)
44 nfcv 2899 . . . . . . . . . 10 𝑥𝑋
45 nfcv 2899 . . . . . . . . . 10 𝑥𝑦
46 nfmpt1 5225 . . . . . . . . . 10 𝑥(𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
4744, 45, 46fvelrnbf 45009 . . . . . . . . 9 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ↔ ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦))
4843, 47syl 17 . . . . . . . 8 (𝜑 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ↔ ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦))
4948biimpa 476 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦)
5046nfrn 5937 . . . . . . . . . 10 𝑥ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
5150nfcri 2891 . . . . . . . . 9 𝑥 𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
5226, 51nfan 1899 . . . . . . . 8 𝑥(𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
53 nfcv 2899 . . . . . . . . 9 𝑥
5453nfcri 2891 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
55 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥𝑋)
5655, 38jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥𝑋 ∧ Σ𝑘𝐴 𝐵 ∈ ℝ))
5741fvmpt2 7002 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ Σ𝑘𝐴 𝐵 ∈ ℝ) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
59583adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
60 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦)
6159, 60eqtr3d 2773 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → Σ𝑘𝐴 𝐵 = 𝑦)
62383adant3 1132 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → Σ𝑘𝐴 𝐵 ∈ ℝ)
6361, 62eqeltrrd 2836 . . . . . . . . . 10 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → 𝑦 ∈ ℝ)
64633adant1r 1178 . . . . . . . . 9 (((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) ∧ 𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → 𝑦 ∈ ℝ)
65643exp 1119 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → (𝑥𝑋 → (((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦𝑦 ∈ ℝ)))
6652, 54, 65rexlimd 3253 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → (∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦𝑦 ∈ ℝ))
6749, 66mpd 15 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → 𝑦 ∈ ℝ)
6867ex 412 . . . . 5 (𝜑 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) → 𝑦 ∈ ℝ))
6968ssrdv 3969 . . . 4 (𝜑 → ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ⊆ ℝ)
7019a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
71 cnrest2 23229 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
7225, 69, 70, 71syl3anc 1373 . . 3 (𝜑 → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
7324, 72mpbid 232 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
7473, 8eleqtrrdi 2846 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3052  wrex 3061  wss 3931  cmpt 5206  ran crn 5660   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  cr 11133  (,)cioo 13367  Σcsu 15707  t crest 17439  TopOpenctopn 17440  topGenctg 17456  fldccnfld 21320  TopOnctopon 22853   Cn ccn 23167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cn 23170  df-cnp 23171  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266
This theorem is referenced by:  refsum2cnlem1  45028
  Copyright terms: Public domain W3C validator