Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsumcn Structured version   Visualization version   GIF version

Theorem refsumcn 45008
Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 24777 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsumcn.1 𝑥𝜑
refsumcn.2 𝐾 = (topGen‘ran (,))
refsumcn.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsumcn.4 (𝜑𝐴 ∈ Fin)
refsumcn.5 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsumcn (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝑘,𝑋,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑘)   𝐾(𝑥,𝑘)

Proof of Theorem refsumcn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2 refsumcn.3 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 refsumcn.4 . . . 4 (𝜑𝐴 ∈ Fin)
4 refsumcn.5 . . . . . 6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
5 refsumcn.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
6 tgioo4 24709 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
75, 6eqtri 2752 . . . . . . 7 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
87oveq2i 7364 . . . . . 6 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
94, 8eleqtrdi 2838 . . . . 5 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
101cnfldtopon 24686 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . . . 6 ((𝜑𝑘𝐴) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
122adantr 480 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
13 retopon 24667 . . . . . . . . . 10 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
145, 13eqeltri 2824 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℝ)
1514a1i 11 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℝ))
16 cnf2 23152 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℝ)
1712, 15, 4, 16syl3anc 1373 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℝ)
1817frnd 6664 . . . . . 6 ((𝜑𝑘𝐴) → ran (𝑥𝑋𝐵) ⊆ ℝ)
19 ax-resscn 11085 . . . . . . 7 ℝ ⊆ ℂ
2019a1i 11 . . . . . 6 ((𝜑𝑘𝐴) → ℝ ⊆ ℂ)
21 cnrest2 23189 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑋𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
2211, 18, 20, 21syl3anc 1373 . . . . 5 ((𝜑𝑘𝐴) → ((𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
239, 22mpbird 257 . . . 4 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
241, 2, 3, 23fsumcnf 44999 . . 3 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
2510a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
26 refsumcn.1 . . . . . . . . . . 11 𝑥𝜑
273adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → 𝐴 ∈ Fin)
28 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝜑)
29 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑘𝐴)
3028, 29jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → (𝜑𝑘𝐴))
31 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑥𝑋)
32 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
3332fmpt 7048 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 𝐵 ∈ ℝ ↔ (𝑥𝑋𝐵):𝑋⟶ℝ)
3417, 33sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℝ)
35 rsp 3217 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 𝐵 ∈ ℝ → (𝑥𝑋𝐵 ∈ ℝ))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℝ))
3730, 31, 36sylc 65 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
3827, 37fsumrecl 15659 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → Σ𝑘𝐴 𝐵 ∈ ℝ)
3938ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋 → Σ𝑘𝐴 𝐵 ∈ ℝ))
4026, 39ralrimi 3227 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 Σ𝑘𝐴 𝐵 ∈ ℝ)
41 eqid 2729 . . . . . . . . . . 11 (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
4241fnmpt 6626 . . . . . . . . . 10 (∀𝑥𝑋 Σ𝑘𝐴 𝐵 ∈ ℝ → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋)
4340, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋)
44 nfcv 2891 . . . . . . . . . 10 𝑥𝑋
45 nfcv 2891 . . . . . . . . . 10 𝑥𝑦
46 nfmpt1 5194 . . . . . . . . . 10 𝑥(𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
4744, 45, 46fvelrnbf 44996 . . . . . . . . 9 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ↔ ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦))
4843, 47syl 17 . . . . . . . 8 (𝜑 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ↔ ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦))
4948biimpa 476 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦)
5046nfrn 5898 . . . . . . . . . 10 𝑥ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
5150nfcri 2883 . . . . . . . . 9 𝑥 𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
5226, 51nfan 1899 . . . . . . . 8 𝑥(𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
53 nfcv 2891 . . . . . . . . 9 𝑥
5453nfcri 2883 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
55 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥𝑋)
5655, 38jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥𝑋 ∧ Σ𝑘𝐴 𝐵 ∈ ℝ))
5741fvmpt2 6945 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ Σ𝑘𝐴 𝐵 ∈ ℝ) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
59583adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
60 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦)
6159, 60eqtr3d 2766 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → Σ𝑘𝐴 𝐵 = 𝑦)
62383adant3 1132 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → Σ𝑘𝐴 𝐵 ∈ ℝ)
6361, 62eqeltrrd 2829 . . . . . . . . . 10 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → 𝑦 ∈ ℝ)
64633adant1r 1178 . . . . . . . . 9 (((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) ∧ 𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → 𝑦 ∈ ℝ)
65643exp 1119 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → (𝑥𝑋 → (((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦𝑦 ∈ ℝ)))
6652, 54, 65rexlimd 3236 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → (∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦𝑦 ∈ ℝ))
6749, 66mpd 15 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → 𝑦 ∈ ℝ)
6867ex 412 . . . . 5 (𝜑 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) → 𝑦 ∈ ℝ))
6968ssrdv 3943 . . . 4 (𝜑 → ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ⊆ ℝ)
7019a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
71 cnrest2 23189 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
7225, 69, 70, 71syl3anc 1373 . . 3 (𝜑 → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
7324, 72mpbid 232 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
7473, 8eleqtrrdi 2839 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053  wss 3905  cmpt 5176  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  cr 11027  (,)cioo 13266  Σcsu 15611  t crest 17342  TopOpenctopn 17343  topGenctg 17359  fldccnfld 21279  TopOnctopon 22813   Cn ccn 23127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cn 23130  df-cnp 23131  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226
This theorem is referenced by:  refsum2cnlem1  45015
  Copyright terms: Public domain W3C validator