Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . 4
β’
(TopOpenββfld) =
(TopOpenββfld) |
2 | | refsumcn.3 |
. . . 4
β’ (π β π½ β (TopOnβπ)) |
3 | | refsumcn.4 |
. . . 4
β’ (π β π΄ β Fin) |
4 | | refsumcn.5 |
. . . . . 6
β’ ((π β§ π β π΄) β (π₯ β π β¦ π΅) β (π½ Cn πΎ)) |
5 | | refsumcn.2 |
. . . . . . . 8
β’ πΎ = (topGenβran
(,)) |
6 | 1 | tgioo2 24310 |
. . . . . . . 8
β’
(topGenβran (,)) = ((TopOpenββfld)
βΎt β) |
7 | 5, 6 | eqtri 2760 |
. . . . . . 7
β’ πΎ =
((TopOpenββfld) βΎt
β) |
8 | 7 | oveq2i 7416 |
. . . . . 6
β’ (π½ Cn πΎ) = (π½ Cn ((TopOpenββfld)
βΎt β)) |
9 | 4, 8 | eleqtrdi 2843 |
. . . . 5
β’ ((π β§ π β π΄) β (π₯ β π β¦ π΅) β (π½ Cn ((TopOpenββfld)
βΎt β))) |
10 | 1 | cnfldtopon 24290 |
. . . . . . 7
β’
(TopOpenββfld) β
(TopOnββ) |
11 | 10 | a1i 11 |
. . . . . 6
β’ ((π β§ π β π΄) β
(TopOpenββfld) β
(TopOnββ)) |
12 | 2 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β π΄) β π½ β (TopOnβπ)) |
13 | | retopon 24271 |
. . . . . . . . . 10
β’
(topGenβran (,)) β (TopOnββ) |
14 | 5, 13 | eqeltri 2829 |
. . . . . . . . 9
β’ πΎ β
(TopOnββ) |
15 | 14 | a1i 11 |
. . . . . . . 8
β’ ((π β§ π β π΄) β πΎ β
(TopOnββ)) |
16 | | cnf2 22744 |
. . . . . . . 8
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnββ) β§ (π₯ β π β¦ π΅) β (π½ Cn πΎ)) β (π₯ β π β¦ π΅):πβΆβ) |
17 | 12, 15, 4, 16 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ π β π΄) β (π₯ β π β¦ π΅):πβΆβ) |
18 | 17 | frnd 6722 |
. . . . . 6
β’ ((π β§ π β π΄) β ran (π₯ β π β¦ π΅) β β) |
19 | | ax-resscn 11163 |
. . . . . . 7
β’ β
β β |
20 | 19 | a1i 11 |
. . . . . 6
β’ ((π β§ π β π΄) β β β
β) |
21 | | cnrest2 22781 |
. . . . . 6
β’
(((TopOpenββfld) β (TopOnββ)
β§ ran (π₯ β π β¦ π΅) β β β§ β β
β) β ((π₯ β
π β¦ π΅) β (π½ Cn (TopOpenββfld))
β (π₯ β π β¦ π΅) β (π½ Cn ((TopOpenββfld)
βΎt β)))) |
22 | 11, 18, 20, 21 | syl3anc 1371 |
. . . . 5
β’ ((π β§ π β π΄) β ((π₯ β π β¦ π΅) β (π½ Cn (TopOpenββfld))
β (π₯ β π β¦ π΅) β (π½ Cn ((TopOpenββfld)
βΎt β)))) |
23 | 9, 22 | mpbird 256 |
. . . 4
β’ ((π β§ π β π΄) β (π₯ β π β¦ π΅) β (π½ Cn
(TopOpenββfld))) |
24 | 1, 2, 3, 23 | fsumcnf 43690 |
. . 3
β’ (π β (π₯ β π β¦ Ξ£π β π΄ π΅) β (π½ Cn
(TopOpenββfld))) |
25 | 10 | a1i 11 |
. . . 4
β’ (π β
(TopOpenββfld) β
(TopOnββ)) |
26 | | refsumcn.1 |
. . . . . . . . . . 11
β’
β²π₯π |
27 | 3 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β π) β π΄ β Fin) |
28 | | simpll 765 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β π) β§ π β π΄) β π) |
29 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β π) β§ π β π΄) β π β π΄) |
30 | 28, 29 | jca 512 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β π) β§ π β π΄) β (π β§ π β π΄)) |
31 | | simplr 767 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β π) β§ π β π΄) β π₯ β π) |
32 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ β π β¦ π΅) = (π₯ β π β¦ π΅) |
33 | 32 | fmpt 7106 |
. . . . . . . . . . . . . . . 16
β’
(βπ₯ β
π π΅ β β β (π₯ β π β¦ π΅):πβΆβ) |
34 | 17, 33 | sylibr 233 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β βπ₯ β π π΅ β β) |
35 | | rsp 3244 |
. . . . . . . . . . . . . . 15
β’
(βπ₯ β
π π΅ β β β (π₯ β π β π΅ β β)) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β (π₯ β π β π΅ β β)) |
37 | 30, 31, 36 | sylc 65 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β π) β§ π β π΄) β π΅ β β) |
38 | 27, 37 | fsumrecl 15676 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β π) β Ξ£π β π΄ π΅ β β) |
39 | 38 | ex 413 |
. . . . . . . . . . 11
β’ (π β (π₯ β π β Ξ£π β π΄ π΅ β β)) |
40 | 26, 39 | ralrimi 3254 |
. . . . . . . . . 10
β’ (π β βπ₯ β π Ξ£π β π΄ π΅ β β) |
41 | | eqid 2732 |
. . . . . . . . . . 11
β’ (π₯ β π β¦ Ξ£π β π΄ π΅) = (π₯ β π β¦ Ξ£π β π΄ π΅) |
42 | 41 | fnmpt 6687 |
. . . . . . . . . 10
β’
(βπ₯ β
π Ξ£π β π΄ π΅ β β β (π₯ β π β¦ Ξ£π β π΄ π΅) Fn π) |
43 | 40, 42 | syl 17 |
. . . . . . . . 9
β’ (π β (π₯ β π β¦ Ξ£π β π΄ π΅) Fn π) |
44 | | nfcv 2903 |
. . . . . . . . . 10
β’
β²π₯π |
45 | | nfcv 2903 |
. . . . . . . . . 10
β’
β²π₯π¦ |
46 | | nfmpt1 5255 |
. . . . . . . . . 10
β’
β²π₯(π₯ β π β¦ Ξ£π β π΄ π΅) |
47 | 44, 45, 46 | fvelrnbf 43687 |
. . . . . . . . 9
β’ ((π₯ β π β¦ Ξ£π β π΄ π΅) Fn π β (π¦ β ran (π₯ β π β¦ Ξ£π β π΄ π΅) β βπ₯ β π ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦)) |
48 | 43, 47 | syl 17 |
. . . . . . . 8
β’ (π β (π¦ β ran (π₯ β π β¦ Ξ£π β π΄ π΅) β βπ₯ β π ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦)) |
49 | 48 | biimpa 477 |
. . . . . . 7
β’ ((π β§ π¦ β ran (π₯ β π β¦ Ξ£π β π΄ π΅)) β βπ₯ β π ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦) |
50 | 46 | nfrn 5949 |
. . . . . . . . . 10
β’
β²π₯ran
(π₯ β π β¦ Ξ£π β π΄ π΅) |
51 | 50 | nfcri 2890 |
. . . . . . . . 9
β’
β²π₯ π¦ β ran (π₯ β π β¦ Ξ£π β π΄ π΅) |
52 | 26, 51 | nfan 1902 |
. . . . . . . 8
β’
β²π₯(π β§ π¦ β ran (π₯ β π β¦ Ξ£π β π΄ π΅)) |
53 | | nfcv 2903 |
. . . . . . . . 9
β’
β²π₯β |
54 | 53 | nfcri 2890 |
. . . . . . . 8
β’
β²π₯ π¦ β β |
55 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π₯ β π) β π₯ β π) |
56 | 55, 38 | jca 512 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β π) β (π₯ β π β§ Ξ£π β π΄ π΅ β β)) |
57 | 41 | fvmpt2 7006 |
. . . . . . . . . . . . . 14
β’ ((π₯ β π β§ Ξ£π β π΄ π΅ β β) β ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = Ξ£π β π΄ π΅) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β π) β ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = Ξ£π β π΄ π΅) |
59 | 58 | 3adant3 1132 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β π β§ ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦) β ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = Ξ£π β π΄ π΅) |
60 | | simp3 1138 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β π β§ ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦) β ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦) |
61 | 59, 60 | eqtr3d 2774 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β π β§ ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦) β Ξ£π β π΄ π΅ = π¦) |
62 | 38 | 3adant3 1132 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β π β§ ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦) β Ξ£π β π΄ π΅ β β) |
63 | 61, 62 | eqeltrrd 2834 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π β§ ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦) β π¦ β β) |
64 | 63 | 3adant1r 1177 |
. . . . . . . . 9
β’ (((π β§ π¦ β ran (π₯ β π β¦ Ξ£π β π΄ π΅)) β§ π₯ β π β§ ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦) β π¦ β β) |
65 | 64 | 3exp 1119 |
. . . . . . . 8
β’ ((π β§ π¦ β ran (π₯ β π β¦ Ξ£π β π΄ π΅)) β (π₯ β π β (((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦ β π¦ β β))) |
66 | 52, 54, 65 | rexlimd 3263 |
. . . . . . 7
β’ ((π β§ π¦ β ran (π₯ β π β¦ Ξ£π β π΄ π΅)) β (βπ₯ β π ((π₯ β π β¦ Ξ£π β π΄ π΅)βπ₯) = π¦ β π¦ β β)) |
67 | 49, 66 | mpd 15 |
. . . . . 6
β’ ((π β§ π¦ β ran (π₯ β π β¦ Ξ£π β π΄ π΅)) β π¦ β β) |
68 | 67 | ex 413 |
. . . . 5
β’ (π β (π¦ β ran (π₯ β π β¦ Ξ£π β π΄ π΅) β π¦ β β)) |
69 | 68 | ssrdv 3987 |
. . . 4
β’ (π β ran (π₯ β π β¦ Ξ£π β π΄ π΅) β β) |
70 | 19 | a1i 11 |
. . . 4
β’ (π β β β
β) |
71 | | cnrest2 22781 |
. . . 4
β’
(((TopOpenββfld) β (TopOnββ)
β§ ran (π₯ β π β¦ Ξ£π β π΄ π΅) β β β§ β β
β) β ((π₯ β
π β¦ Ξ£π β π΄ π΅) β (π½ Cn (TopOpenββfld))
β (π₯ β π β¦ Ξ£π β π΄ π΅) β (π½ Cn ((TopOpenββfld)
βΎt β)))) |
72 | 25, 69, 70, 71 | syl3anc 1371 |
. . 3
β’ (π β ((π₯ β π β¦ Ξ£π β π΄ π΅) β (π½ Cn (TopOpenββfld))
β (π₯ β π β¦ Ξ£π β π΄ π΅) β (π½ Cn ((TopOpenββfld)
βΎt β)))) |
73 | 24, 72 | mpbid 231 |
. 2
β’ (π β (π₯ β π β¦ Ξ£π β π΄ π΅) β (π½ Cn ((TopOpenββfld)
βΎt β))) |
74 | 73, 8 | eleqtrrdi 2844 |
1
β’ (π β (π₯ β π β¦ Ξ£π β π΄ π΅) β (π½ Cn πΎ)) |