Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsumcn Structured version   Visualization version   GIF version

Theorem refsumcn 39937
Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 22998 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsumcn.1 𝑥𝜑
refsumcn.2 𝐾 = (topGen‘ran (,))
refsumcn.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsumcn.4 (𝜑𝐴 ∈ Fin)
refsumcn.5 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsumcn (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝑘,𝑋,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑘)   𝐾(𝑥,𝑘)

Proof of Theorem refsumcn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2797 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2 refsumcn.3 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 refsumcn.4 . . . 4 (𝜑𝐴 ∈ Fin)
4 refsumcn.5 . . . . . 6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
5 refsumcn.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
61tgioo2 22931 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
75, 6eqtri 2819 . . . . . . 7 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
87oveq2i 6887 . . . . . 6 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
94, 8syl6eleq 2886 . . . . 5 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
101cnfldtopon 22911 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . . . 6 ((𝜑𝑘𝐴) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
122adantr 473 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
13 retopon 22892 . . . . . . . . . 10 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
145, 13eqeltri 2872 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℝ)
1514a1i 11 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℝ))
16 cnf2 21379 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℝ)
1712, 15, 4, 16syl3anc 1491 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℝ)
1817frnd 6261 . . . . . 6 ((𝜑𝑘𝐴) → ran (𝑥𝑋𝐵) ⊆ ℝ)
19 ax-resscn 10279 . . . . . . 7 ℝ ⊆ ℂ
2019a1i 11 . . . . . 6 ((𝜑𝑘𝐴) → ℝ ⊆ ℂ)
21 cnrest2 21416 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑋𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
2211, 18, 20, 21syl3anc 1491 . . . . 5 ((𝜑𝑘𝐴) → ((𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
239, 22mpbird 249 . . . 4 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
241, 2, 3, 23fsumcnf 39928 . . 3 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
2510a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
26 refsumcn.1 . . . . . . . . . . 11 𝑥𝜑
273adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → 𝐴 ∈ Fin)
28 simpll 784 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝜑)
29 simpr 478 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑘𝐴)
3028, 29jca 508 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → (𝜑𝑘𝐴))
31 simplr 786 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑥𝑋)
32 eqid 2797 . . . . . . . . . . . . . . . . 17 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
3332fmpt 6604 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 𝐵 ∈ ℝ ↔ (𝑥𝑋𝐵):𝑋⟶ℝ)
3417, 33sylibr 226 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℝ)
35 rsp 3108 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 𝐵 ∈ ℝ → (𝑥𝑋𝐵 ∈ ℝ))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℝ))
3730, 31, 36sylc 65 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
3827, 37fsumrecl 14803 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → Σ𝑘𝐴 𝐵 ∈ ℝ)
3938ex 402 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋 → Σ𝑘𝐴 𝐵 ∈ ℝ))
4026, 39ralrimi 3136 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 Σ𝑘𝐴 𝐵 ∈ ℝ)
41 eqid 2797 . . . . . . . . . . 11 (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
4241fnmpt 6229 . . . . . . . . . 10 (∀𝑥𝑋 Σ𝑘𝐴 𝐵 ∈ ℝ → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋)
4340, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋)
44 nfcv 2939 . . . . . . . . . 10 𝑥𝑋
45 nfcv 2939 . . . . . . . . . 10 𝑥𝑦
46 nfmpt1 4938 . . . . . . . . . 10 𝑥(𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
4744, 45, 46fvelrnbf 39925 . . . . . . . . 9 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) Fn 𝑋 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ↔ ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦))
4843, 47syl 17 . . . . . . . 8 (𝜑 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ↔ ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦))
4948biimpa 469 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → ∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦)
5046nfrn 5570 . . . . . . . . . 10 𝑥ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
5150nfcri 2933 . . . . . . . . 9 𝑥 𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)
5226, 51nfan 1999 . . . . . . . 8 𝑥(𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
53 nfcv 2939 . . . . . . . . 9 𝑥
5453nfcri 2933 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
55 simpr 478 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥𝑋)
5655, 38jca 508 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥𝑋 ∧ Σ𝑘𝐴 𝐵 ∈ ℝ))
5741fvmpt2 6514 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ Σ𝑘𝐴 𝐵 ∈ ℝ) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
59583adant3 1163 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = Σ𝑘𝐴 𝐵)
60 simp3 1169 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦)
6159, 60eqtr3d 2833 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → Σ𝑘𝐴 𝐵 = 𝑦)
62383adant3 1163 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → Σ𝑘𝐴 𝐵 ∈ ℝ)
6361, 62eqeltrrd 2877 . . . . . . . . . 10 ((𝜑𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → 𝑦 ∈ ℝ)
64633adant1r 1224 . . . . . . . . 9 (((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) ∧ 𝑥𝑋 ∧ ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦) → 𝑦 ∈ ℝ)
65643exp 1149 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → (𝑥𝑋 → (((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦𝑦 ∈ ℝ)))
6652, 54, 65rexlimd 3205 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → (∃𝑥𝑋 ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)‘𝑥) = 𝑦𝑦 ∈ ℝ))
6749, 66mpd 15 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵)) → 𝑦 ∈ ℝ)
6867ex 402 . . . . 5 (𝜑 → (𝑦 ∈ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) → 𝑦 ∈ ℝ))
6968ssrdv 3802 . . . 4 (𝜑 → ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ⊆ ℝ)
7019a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
71 cnrest2 21416 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
7225, 69, 70, 71syl3anc 1491 . . 3 (𝜑 → ((𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
7324, 72mpbid 224 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
7473, 8syl6eleqr 2887 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wnf 1879  wcel 2157  wral 3087  wrex 3088  wss 3767  cmpt 4920  ran crn 5311   Fn wfn 6094  wf 6095  cfv 6099  (class class class)co 6876  Fincfn 8193  cc 10220  cr 10221  (,)cioo 12420  Σcsu 14754  t crest 16393  TopOpenctopn 16394  topGenctg 16410  fldccnfld 20065  TopOnctopon 21040   Cn ccn 21354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300  ax-addf 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-2o 7798  df-oadd 7801  df-er 7980  df-map 8095  df-ixp 8147  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-fi 8557  df-sup 8588  df-inf 8589  df-oi 8655  df-card 9049  df-cda 9276  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-q 12030  df-rp 12071  df-xneg 12189  df-xadd 12190  df-xmul 12191  df-ioo 12424  df-icc 12427  df-fz 12577  df-fzo 12717  df-seq 13052  df-exp 13111  df-hash 13367  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-clim 14557  df-sum 14755  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-hom 16288  df-cco 16289  df-rest 16395  df-topn 16396  df-0g 16414  df-gsum 16415  df-topgen 16416  df-pt 16417  df-prds 16420  df-xrs 16474  df-qtop 16479  df-imas 16480  df-xps 16482  df-mre 16558  df-mrc 16559  df-acs 16561  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-submnd 17648  df-mulg 17854  df-cntz 18059  df-cmn 18507  df-psmet 20057  df-xmet 20058  df-met 20059  df-bl 20060  df-mopn 20061  df-cnfld 20066  df-top 21024  df-topon 21041  df-topsp 21063  df-bases 21076  df-cn 21357  df-cnp 21358  df-tx 21691  df-hmeo 21884  df-xms 22450  df-ms 22451  df-tms 22452
This theorem is referenced by:  refsum2cnlem1  39944
  Copyright terms: Public domain W3C validator