Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptfo Structured version   Visualization version   GIF version

Theorem 2arymaptfo 46730
Description: The mapping of binary (endo)functions is a function onto the set of binary operations. (Contributed by AV, 23-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptfo (𝑋𝑉𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptfo
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2arymaptf.h . . 3 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
212arymaptf 46728 . 2 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
3 elmapi 8787 . . . . 5 (𝑓 ∈ (𝑋m (𝑋 × 𝑋)) → 𝑓:(𝑋 × 𝑋)⟶𝑋)
4 eqid 2736 . . . . . 6 (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
542arympt 46725 . . . . 5 ((𝑋𝑉𝑓:(𝑋 × 𝑋)⟶𝑋) → (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) ∈ (2-aryF 𝑋))
63, 5sylan2 593 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) ∈ (2-aryF 𝑋))
7 fveq2 6842 . . . . . 6 (𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) → (𝐻𝑔) = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))))
87eqeq2d 2747 . . . . 5 (𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))))
98adantl 482 . . . 4 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ 𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))))
10 elmapfn 8803 . . . . . . 7 (𝑓 ∈ (𝑋m (𝑋 × 𝑋)) → 𝑓 Fn (𝑋 × 𝑋))
1110adantl 482 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 Fn (𝑋 × 𝑋))
12 fnov 7487 . . . . . 6 (𝑓 Fn (𝑋 × 𝑋) ↔ 𝑓 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
1311, 12sylib 217 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
14 simp1r 1198 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))
15 fveq1 6841 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘0) = ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0))
16 0ne1 12224 . . . . . . . . . . . 12 0 ≠ 1
17 c0ex 11149 . . . . . . . . . . . . 13 0 ∈ V
18 vex 3449 . . . . . . . . . . . . 13 𝑥 ∈ V
1917, 18fvpr1 7139 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0) = 𝑥)
2016, 19ax-mp 5 . . . . . . . . . . 11 ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0) = 𝑥
2115, 20eqtrdi 2792 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘0) = 𝑥)
22 fveq1 6841 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘1) = ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1))
23 1ex 11151 . . . . . . . . . . . . 13 1 ∈ V
24 vex 3449 . . . . . . . . . . . . 13 𝑦 ∈ V
2523, 24fvpr2 7141 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1) = 𝑦)
2616, 25ax-mp 5 . . . . . . . . . . 11 ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1) = 𝑦
2722, 26eqtrdi 2792 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘1) = 𝑦)
2821, 27oveq12d 7375 . . . . . . . . 9 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → ((𝑎‘0)𝑓(𝑎‘1)) = (𝑥𝑓𝑦))
2928adantl 482 . . . . . . . 8 (((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) ∧ 𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → ((𝑎‘0)𝑓(𝑎‘1)) = (𝑥𝑓𝑦))
3017, 23pm3.2i 471 . . . . . . . . . . . . . 14 (0 ∈ V ∧ 1 ∈ V)
31 fprg 7101 . . . . . . . . . . . . . 14 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝑥𝑋𝑦𝑋) ∧ 0 ≠ 1) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
3230, 16, 31mp3an13 1452 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
33323adant1 1130 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
34 prssi 4781 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → {𝑥, 𝑦} ⊆ 𝑋)
35343adant1 1130 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {𝑥, 𝑦} ⊆ 𝑋)
3633, 35fssd 6686 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶𝑋)
37 simp1 1136 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → 𝑋𝑉)
38 prex 5389 . . . . . . . . . . . . 13 {0, 1} ∈ V
3938a1i 11 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {0, 1} ∈ V)
4037, 39elmapd 8779 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋𝑦𝑋) → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}) ↔ {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶𝑋))
4136, 40mpbird 256 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
42413adant1r 1177 . . . . . . . . 9 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ 𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
43423adant1r 1177 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
44 ovexd 7392 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑓𝑦) ∈ V)
45 nfv 1917 . . . . . . . . . 10 𝑎(𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋)))
46 nfmpt1 5213 . . . . . . . . . . 11 𝑎(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
4746nfeq2 2924 . . . . . . . . . 10 𝑎 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
4845, 47nfan 1902 . . . . . . . . 9 𝑎((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))
49 nfv 1917 . . . . . . . . 9 𝑎 𝑥𝑋
50 nfv 1917 . . . . . . . . 9 𝑎 𝑦𝑋
5148, 49, 50nf3an 1904 . . . . . . . 8 𝑎(((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋)
52 nfcv 2907 . . . . . . . 8 𝑎{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}
53 nfcv 2907 . . . . . . . 8 𝑎(𝑥𝑓𝑦)
5414, 29, 43, 44, 51, 52, 53fvmptdf 6954 . . . . . . 7 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑥𝑓𝑦))
5554mpoeq3dva 7434 . . . . . 6 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
56 mpoexga 8010 . . . . . . . 8 ((𝑋𝑉𝑋𝑉) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
5756anidms 567 . . . . . . 7 (𝑋𝑉 → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
5857adantr 481 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
591, 55, 6, 58fvmptd2 6956 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
6013, 59eqtr4d 2779 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))))
616, 9, 60rspcedvd 3583 . . 3 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → ∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔))
6261ralrimiva 3143 . 2 (𝑋𝑉 → ∀𝑓 ∈ (𝑋m (𝑋 × 𝑋))∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔))
63 dffo3 7052 . 2 (𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)) ↔ (𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)) ∧ ∀𝑓 ∈ (𝑋m (𝑋 × 𝑋))∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔)))
642, 62, 63sylanbrc 583 1 (𝑋𝑉𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  wss 3910  {cpr 4588  cop 4592  cmpt 5188   × cxp 5631   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  0cc0 11051  1c1 11052  2c2 12208  -aryF cnaryf 46702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-naryf 46703
This theorem is referenced by:  2arymaptf1o  46731
  Copyright terms: Public domain W3C validator