Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptfo Structured version   Visualization version   GIF version

Theorem 2arymaptfo 45969
Description: The mapping of binary (endo)functions is a function onto the set of binary operations. (Contributed by AV, 23-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptfo (𝑋𝑉𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptfo
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2arymaptf.h . . 3 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
212arymaptf 45967 . 2 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
3 elmapi 8620 . . . . 5 (𝑓 ∈ (𝑋m (𝑋 × 𝑋)) → 𝑓:(𝑋 × 𝑋)⟶𝑋)
4 eqid 2740 . . . . . 6 (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
542arympt 45964 . . . . 5 ((𝑋𝑉𝑓:(𝑋 × 𝑋)⟶𝑋) → (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) ∈ (2-aryF 𝑋))
63, 5sylan2 593 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) ∈ (2-aryF 𝑋))
7 fveq2 6771 . . . . . 6 (𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) → (𝐻𝑔) = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))))
87eqeq2d 2751 . . . . 5 (𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))))
98adantl 482 . . . 4 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ 𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))))
10 elmapfn 8636 . . . . . . 7 (𝑓 ∈ (𝑋m (𝑋 × 𝑋)) → 𝑓 Fn (𝑋 × 𝑋))
1110adantl 482 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 Fn (𝑋 × 𝑋))
12 fnov 7399 . . . . . 6 (𝑓 Fn (𝑋 × 𝑋) ↔ 𝑓 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
1311, 12sylib 217 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
14 simp1r 1197 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))
15 fveq1 6770 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘0) = ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0))
16 0ne1 12044 . . . . . . . . . . . 12 0 ≠ 1
17 c0ex 10970 . . . . . . . . . . . . 13 0 ∈ V
18 vex 3435 . . . . . . . . . . . . 13 𝑥 ∈ V
1917, 18fvpr1 7062 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0) = 𝑥)
2016, 19ax-mp 5 . . . . . . . . . . 11 ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0) = 𝑥
2115, 20eqtrdi 2796 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘0) = 𝑥)
22 fveq1 6770 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘1) = ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1))
23 1ex 10972 . . . . . . . . . . . . 13 1 ∈ V
24 vex 3435 . . . . . . . . . . . . 13 𝑦 ∈ V
2523, 24fvpr2 7064 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1) = 𝑦)
2616, 25ax-mp 5 . . . . . . . . . . 11 ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1) = 𝑦
2722, 26eqtrdi 2796 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘1) = 𝑦)
2821, 27oveq12d 7289 . . . . . . . . 9 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → ((𝑎‘0)𝑓(𝑎‘1)) = (𝑥𝑓𝑦))
2928adantl 482 . . . . . . . 8 (((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) ∧ 𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → ((𝑎‘0)𝑓(𝑎‘1)) = (𝑥𝑓𝑦))
3017, 23pm3.2i 471 . . . . . . . . . . . . . 14 (0 ∈ V ∧ 1 ∈ V)
31 fprg 7024 . . . . . . . . . . . . . 14 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝑥𝑋𝑦𝑋) ∧ 0 ≠ 1) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
3230, 16, 31mp3an13 1451 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
33323adant1 1129 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
34 prssi 4760 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → {𝑥, 𝑦} ⊆ 𝑋)
35343adant1 1129 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {𝑥, 𝑦} ⊆ 𝑋)
3633, 35fssd 6616 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶𝑋)
37 simp1 1135 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → 𝑋𝑉)
38 prex 5359 . . . . . . . . . . . . 13 {0, 1} ∈ V
3938a1i 11 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {0, 1} ∈ V)
4037, 39elmapd 8612 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋𝑦𝑋) → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}) ↔ {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶𝑋))
4136, 40mpbird 256 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
42413adant1r 1176 . . . . . . . . 9 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ 𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
43423adant1r 1176 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
44 ovexd 7306 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑓𝑦) ∈ V)
45 nfv 1921 . . . . . . . . . 10 𝑎(𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋)))
46 nfmpt1 5187 . . . . . . . . . . 11 𝑎(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
4746nfeq2 2926 . . . . . . . . . 10 𝑎 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
4845, 47nfan 1906 . . . . . . . . 9 𝑎((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))
49 nfv 1921 . . . . . . . . 9 𝑎 𝑥𝑋
50 nfv 1921 . . . . . . . . 9 𝑎 𝑦𝑋
5148, 49, 50nf3an 1908 . . . . . . . 8 𝑎(((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋)
52 nfcv 2909 . . . . . . . 8 𝑎{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}
53 nfcv 2909 . . . . . . . 8 𝑎(𝑥𝑓𝑦)
5414, 29, 43, 44, 51, 52, 53fvmptdf 6878 . . . . . . 7 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑥𝑓𝑦))
5554mpoeq3dva 7346 . . . . . 6 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
56 mpoexga 7911 . . . . . . . 8 ((𝑋𝑉𝑋𝑉) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
5756anidms 567 . . . . . . 7 (𝑋𝑉 → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
5857adantr 481 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
591, 55, 6, 58fvmptd2 6880 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
6013, 59eqtr4d 2783 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))))
616, 9, 60rspcedvd 3564 . . 3 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → ∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔))
6261ralrimiva 3110 . 2 (𝑋𝑉 → ∀𝑓 ∈ (𝑋m (𝑋 × 𝑋))∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔))
63 dffo3 6975 . 2 (𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)) ↔ (𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)) ∧ ∀𝑓 ∈ (𝑋m (𝑋 × 𝑋))∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔)))
642, 62, 63sylanbrc 583 1 (𝑋𝑉𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  Vcvv 3431  wss 3892  {cpr 4569  cop 4573  cmpt 5162   × cxp 5588   Fn wfn 6427  wf 6428  ontowfo 6430  cfv 6432  (class class class)co 7271  cmpo 7273  m cmap 8598  0cc0 10872  1c1 10873  2c2 12028  -aryF cnaryf 45941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382  df-naryf 45942
This theorem is referenced by:  2arymaptf1o  45970
  Copyright terms: Public domain W3C validator