Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptfo Structured version   Visualization version   GIF version

Theorem 2arymaptfo 48647
Description: The mapping of binary (endo)functions is a function onto the set of binary operations. (Contributed by AV, 23-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptfo (𝑋𝑉𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptfo
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2arymaptf.h . . 3 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
212arymaptf 48645 . 2 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
3 elmapi 8825 . . . . 5 (𝑓 ∈ (𝑋m (𝑋 × 𝑋)) → 𝑓:(𝑋 × 𝑋)⟶𝑋)
4 eqid 2730 . . . . . 6 (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
542arympt 48642 . . . . 5 ((𝑋𝑉𝑓:(𝑋 × 𝑋)⟶𝑋) → (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) ∈ (2-aryF 𝑋))
63, 5sylan2 593 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) ∈ (2-aryF 𝑋))
7 fveq2 6861 . . . . . 6 (𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) → (𝐻𝑔) = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))))
87eqeq2d 2741 . . . . 5 (𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))))
98adantl 481 . . . 4 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ 𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))))
10 elmapfn 8841 . . . . . . 7 (𝑓 ∈ (𝑋m (𝑋 × 𝑋)) → 𝑓 Fn (𝑋 × 𝑋))
1110adantl 481 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 Fn (𝑋 × 𝑋))
12 fnov 7523 . . . . . 6 (𝑓 Fn (𝑋 × 𝑋) ↔ 𝑓 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
1311, 12sylib 218 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
14 simp1r 1199 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))
15 fveq1 6860 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘0) = ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0))
16 0ne1 12264 . . . . . . . . . . . 12 0 ≠ 1
17 c0ex 11175 . . . . . . . . . . . . 13 0 ∈ V
18 vex 3454 . . . . . . . . . . . . 13 𝑥 ∈ V
1917, 18fvpr1 7169 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0) = 𝑥)
2016, 19ax-mp 5 . . . . . . . . . . 11 ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0) = 𝑥
2115, 20eqtrdi 2781 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘0) = 𝑥)
22 fveq1 6860 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘1) = ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1))
23 1ex 11177 . . . . . . . . . . . . 13 1 ∈ V
24 vex 3454 . . . . . . . . . . . . 13 𝑦 ∈ V
2523, 24fvpr2 7170 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1) = 𝑦)
2616, 25ax-mp 5 . . . . . . . . . . 11 ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1) = 𝑦
2722, 26eqtrdi 2781 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘1) = 𝑦)
2821, 27oveq12d 7408 . . . . . . . . 9 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → ((𝑎‘0)𝑓(𝑎‘1)) = (𝑥𝑓𝑦))
2928adantl 481 . . . . . . . 8 (((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) ∧ 𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → ((𝑎‘0)𝑓(𝑎‘1)) = (𝑥𝑓𝑦))
3017, 23pm3.2i 470 . . . . . . . . . . . . . 14 (0 ∈ V ∧ 1 ∈ V)
31 fprg 7130 . . . . . . . . . . . . . 14 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝑥𝑋𝑦𝑋) ∧ 0 ≠ 1) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
3230, 16, 31mp3an13 1454 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
33323adant1 1130 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
34 prssi 4788 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → {𝑥, 𝑦} ⊆ 𝑋)
35343adant1 1130 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {𝑥, 𝑦} ⊆ 𝑋)
3633, 35fssd 6708 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶𝑋)
37 simp1 1136 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → 𝑋𝑉)
38 prex 5395 . . . . . . . . . . . . 13 {0, 1} ∈ V
3938a1i 11 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {0, 1} ∈ V)
4037, 39elmapd 8816 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋𝑦𝑋) → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}) ↔ {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶𝑋))
4136, 40mpbird 257 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
42413adant1r 1178 . . . . . . . . 9 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ 𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
43423adant1r 1178 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
44 ovexd 7425 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑓𝑦) ∈ V)
45 nfv 1914 . . . . . . . . . 10 𝑎(𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋)))
46 nfmpt1 5209 . . . . . . . . . . 11 𝑎(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
4746nfeq2 2910 . . . . . . . . . 10 𝑎 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
4845, 47nfan 1899 . . . . . . . . 9 𝑎((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))
49 nfv 1914 . . . . . . . . 9 𝑎 𝑥𝑋
50 nfv 1914 . . . . . . . . 9 𝑎 𝑦𝑋
5148, 49, 50nf3an 1901 . . . . . . . 8 𝑎(((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋)
52 nfcv 2892 . . . . . . . 8 𝑎{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}
53 nfcv 2892 . . . . . . . 8 𝑎(𝑥𝑓𝑦)
5414, 29, 43, 44, 51, 52, 53fvmptdf 6977 . . . . . . 7 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑥𝑓𝑦))
5554mpoeq3dva 7469 . . . . . 6 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
56 mpoexga 8059 . . . . . . . 8 ((𝑋𝑉𝑋𝑉) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
5756anidms 566 . . . . . . 7 (𝑋𝑉 → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
5857adantr 480 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
591, 55, 6, 58fvmptd2 6979 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
6013, 59eqtr4d 2768 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))))
616, 9, 60rspcedvd 3593 . . 3 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → ∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔))
6261ralrimiva 3126 . 2 (𝑋𝑉 → ∀𝑓 ∈ (𝑋m (𝑋 × 𝑋))∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔))
63 dffo3 7077 . 2 (𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)) ↔ (𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)) ∧ ∀𝑓 ∈ (𝑋m (𝑋 × 𝑋))∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔)))
642, 62, 63sylanbrc 583 1 (𝑋𝑉𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  {cpr 4594  cop 4598  cmpt 5191   × cxp 5639   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  0cc0 11075  1c1 11076  2c2 12248  -aryF cnaryf 48619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-naryf 48620
This theorem is referenced by:  2arymaptf1o  48648
  Copyright terms: Public domain W3C validator