Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptfo Structured version   Visualization version   GIF version

Theorem 2arymaptfo 45418
Description: The mapping of binary (endo)functions is a function onto the set of binary operations. (Contributed by AV, 23-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptfo (𝑋𝑉𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptfo
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2arymaptf.h . . 3 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
212arymaptf 45416 . 2 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
3 elmapi 8431 . . . . 5 (𝑓 ∈ (𝑋m (𝑋 × 𝑋)) → 𝑓:(𝑋 × 𝑋)⟶𝑋)
4 eqid 2759 . . . . . 6 (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
542arympt 45413 . . . . 5 ((𝑋𝑉𝑓:(𝑋 × 𝑋)⟶𝑋) → (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) ∈ (2-aryF 𝑋))
63, 5sylan2 596 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) ∈ (2-aryF 𝑋))
7 fveq2 6651 . . . . . 6 (𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) → (𝐻𝑔) = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))))
87eqeq2d 2770 . . . . 5 (𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))))
98adantl 486 . . . 4 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ 𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))))
10 elmapfn 8440 . . . . . . 7 (𝑓 ∈ (𝑋m (𝑋 × 𝑋)) → 𝑓 Fn (𝑋 × 𝑋))
1110adantl 486 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 Fn (𝑋 × 𝑋))
12 fnov 7270 . . . . . 6 (𝑓 Fn (𝑋 × 𝑋) ↔ 𝑓 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
1311, 12sylib 221 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
14 simp1r 1196 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))
15 fveq1 6650 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘0) = ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0))
16 0ne1 11730 . . . . . . . . . . . 12 0 ≠ 1
17 c0ex 10658 . . . . . . . . . . . . 13 0 ∈ V
18 vex 3411 . . . . . . . . . . . . 13 𝑥 ∈ V
1917, 18fvpr1 6936 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0) = 𝑥)
2016, 19ax-mp 5 . . . . . . . . . . 11 ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0) = 𝑥
2115, 20eqtrdi 2810 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘0) = 𝑥)
22 fveq1 6650 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘1) = ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1))
23 1ex 10660 . . . . . . . . . . . . 13 1 ∈ V
24 vex 3411 . . . . . . . . . . . . 13 𝑦 ∈ V
2523, 24fvpr2 6937 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1) = 𝑦)
2616, 25ax-mp 5 . . . . . . . . . . 11 ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1) = 𝑦
2722, 26eqtrdi 2810 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘1) = 𝑦)
2821, 27oveq12d 7161 . . . . . . . . 9 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → ((𝑎‘0)𝑓(𝑎‘1)) = (𝑥𝑓𝑦))
2928adantl 486 . . . . . . . 8 (((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) ∧ 𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → ((𝑎‘0)𝑓(𝑎‘1)) = (𝑥𝑓𝑦))
3017, 23pm3.2i 475 . . . . . . . . . . . . . 14 (0 ∈ V ∧ 1 ∈ V)
31 fprg 6901 . . . . . . . . . . . . . 14 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝑥𝑋𝑦𝑋) ∧ 0 ≠ 1) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
3230, 16, 31mp3an13 1450 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
33323adant1 1128 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
34 prssi 4704 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → {𝑥, 𝑦} ⊆ 𝑋)
35343adant1 1128 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {𝑥, 𝑦} ⊆ 𝑋)
3633, 35fssd 6506 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶𝑋)
37 simp1 1134 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → 𝑋𝑉)
38 prex 5294 . . . . . . . . . . . . 13 {0, 1} ∈ V
3938a1i 11 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {0, 1} ∈ V)
4037, 39elmapd 8423 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋𝑦𝑋) → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}) ↔ {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶𝑋))
4136, 40mpbird 260 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
42413adant1r 1175 . . . . . . . . 9 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ 𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
43423adant1r 1175 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
44 ovexd 7178 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑓𝑦) ∈ V)
45 nfv 1916 . . . . . . . . . 10 𝑎(𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋)))
46 nfmpt1 5123 . . . . . . . . . . 11 𝑎(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
4746nfeq2 2934 . . . . . . . . . 10 𝑎 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
4845, 47nfan 1901 . . . . . . . . 9 𝑎((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))
49 nfv 1916 . . . . . . . . 9 𝑎 𝑥𝑋
50 nfv 1916 . . . . . . . . 9 𝑎 𝑦𝑋
5148, 49, 50nf3an 1903 . . . . . . . 8 𝑎(((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋)
52 nfcv 2917 . . . . . . . 8 𝑎{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}
53 nfcv 2917 . . . . . . . 8 𝑎(𝑥𝑓𝑦)
5414, 29, 43, 44, 51, 52, 53fvmptdf 6758 . . . . . . 7 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑥𝑓𝑦))
5554mpoeq3dva 7218 . . . . . 6 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
56 mpoexga 7773 . . . . . . . 8 ((𝑋𝑉𝑋𝑉) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
5756anidms 571 . . . . . . 7 (𝑋𝑉 → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
5857adantr 485 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
591, 55, 6, 58fvmptd2 6760 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
6013, 59eqtr4d 2797 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))))
616, 9, 60rspcedvd 3542 . . 3 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → ∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔))
6261ralrimiva 3111 . 2 (𝑋𝑉 → ∀𝑓 ∈ (𝑋m (𝑋 × 𝑋))∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔))
63 dffo3 6852 . 2 (𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)) ↔ (𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)) ∧ ∀𝑓 ∈ (𝑋m (𝑋 × 𝑋))∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔)))
642, 62, 63sylanbrc 587 1 (𝑋𝑉𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2949  wral 3068  wrex 3069  Vcvv 3407  wss 3854  {cpr 4517  cop 4521  cmpt 5105   × cxp 5515   Fn wfn 6323  wf 6324  ontowfo 6326  cfv 6328  (class class class)co 7143  cmpo 7145  m cmap 8409  0cc0 10560  1c1 10561  2c2 11714  -aryF cnaryf 45390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925  df-fzo 13068  df-naryf 45391
This theorem is referenced by:  2arymaptf1o  45419
  Copyright terms: Public domain W3C validator