Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptfo Structured version   Visualization version   GIF version

Theorem 2arymaptfo 47340
Description: The mapping of binary (endo)functions is a function onto the set of binary operations. (Contributed by AV, 23-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptfo (𝑋𝑉𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptfo
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2arymaptf.h . . 3 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
212arymaptf 47338 . 2 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
3 elmapi 8843 . . . . 5 (𝑓 ∈ (𝑋m (𝑋 × 𝑋)) → 𝑓:(𝑋 × 𝑋)⟶𝑋)
4 eqid 2733 . . . . . 6 (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
542arympt 47335 . . . . 5 ((𝑋𝑉𝑓:(𝑋 × 𝑋)⟶𝑋) → (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) ∈ (2-aryF 𝑋))
63, 5sylan2 594 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) ∈ (2-aryF 𝑋))
7 fveq2 6892 . . . . . 6 (𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) → (𝐻𝑔) = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))))
87eqeq2d 2744 . . . . 5 (𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))))
98adantl 483 . . . 4 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ 𝑔 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))))
10 elmapfn 8859 . . . . . . 7 (𝑓 ∈ (𝑋m (𝑋 × 𝑋)) → 𝑓 Fn (𝑋 × 𝑋))
1110adantl 483 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 Fn (𝑋 × 𝑋))
12 fnov 7540 . . . . . 6 (𝑓 Fn (𝑋 × 𝑋) ↔ 𝑓 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
1311, 12sylib 217 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
14 simp1r 1199 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))
15 fveq1 6891 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘0) = ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0))
16 0ne1 12283 . . . . . . . . . . . 12 0 ≠ 1
17 c0ex 11208 . . . . . . . . . . . . 13 0 ∈ V
18 vex 3479 . . . . . . . . . . . . 13 𝑥 ∈ V
1917, 18fvpr1 7191 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0) = 𝑥)
2016, 19ax-mp 5 . . . . . . . . . . 11 ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘0) = 𝑥
2115, 20eqtrdi 2789 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘0) = 𝑥)
22 fveq1 6891 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘1) = ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1))
23 1ex 11210 . . . . . . . . . . . . 13 1 ∈ V
24 vex 3479 . . . . . . . . . . . . 13 𝑦 ∈ V
2523, 24fvpr2 7193 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1) = 𝑦)
2616, 25ax-mp 5 . . . . . . . . . . 11 ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩}‘1) = 𝑦
2722, 26eqtrdi 2789 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → (𝑎‘1) = 𝑦)
2821, 27oveq12d 7427 . . . . . . . . 9 (𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} → ((𝑎‘0)𝑓(𝑎‘1)) = (𝑥𝑓𝑦))
2928adantl 483 . . . . . . . 8 (((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) ∧ 𝑎 = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → ((𝑎‘0)𝑓(𝑎‘1)) = (𝑥𝑓𝑦))
3017, 23pm3.2i 472 . . . . . . . . . . . . . 14 (0 ∈ V ∧ 1 ∈ V)
31 fprg 7153 . . . . . . . . . . . . . 14 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝑥𝑋𝑦𝑋) ∧ 0 ≠ 1) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
3230, 16, 31mp3an13 1453 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
33323adant1 1131 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶{𝑥, 𝑦})
34 prssi 4825 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → {𝑥, 𝑦} ⊆ 𝑋)
35343adant1 1131 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {𝑥, 𝑦} ⊆ 𝑋)
3633, 35fssd 6736 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶𝑋)
37 simp1 1137 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → 𝑋𝑉)
38 prex 5433 . . . . . . . . . . . . 13 {0, 1} ∈ V
3938a1i 11 . . . . . . . . . . . 12 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {0, 1} ∈ V)
4037, 39elmapd 8834 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋𝑦𝑋) → ({⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}) ↔ {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}:{0, 1}⟶𝑋))
4136, 40mpbird 257 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
42413adant1r 1178 . . . . . . . . 9 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ 𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
43423adant1r 1178 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} ∈ (𝑋m {0, 1}))
44 ovexd 7444 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑓𝑦) ∈ V)
45 nfv 1918 . . . . . . . . . 10 𝑎(𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋)))
46 nfmpt1 5257 . . . . . . . . . . 11 𝑎(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
4746nfeq2 2921 . . . . . . . . . 10 𝑎 = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))
4845, 47nfan 1903 . . . . . . . . 9 𝑎((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1))))
49 nfv 1918 . . . . . . . . 9 𝑎 𝑥𝑋
50 nfv 1918 . . . . . . . . 9 𝑎 𝑦𝑋
5148, 49, 50nf3an 1905 . . . . . . . 8 𝑎(((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋)
52 nfcv 2904 . . . . . . . 8 𝑎{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}
53 nfcv 2904 . . . . . . . 8 𝑎(𝑥𝑓𝑦)
5414, 29, 43, 44, 51, 52, 53fvmptdf 7005 . . . . . . 7 ((((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) ∧ 𝑥𝑋𝑦𝑋) → (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑥𝑓𝑦))
5554mpoeq3dva 7486 . . . . . 6 (((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) ∧ = (𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
56 mpoexga 8064 . . . . . . . 8 ((𝑋𝑉𝑋𝑉) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
5756anidms 568 . . . . . . 7 (𝑋𝑉 → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
5857adantr 482 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)) ∈ V)
591, 55, 6, 58fvmptd2 7007 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝑓𝑦)))
6013, 59eqtr4d 2776 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0, 1}) ↦ ((𝑎‘0)𝑓(𝑎‘1)))))
616, 9, 60rspcedvd 3615 . . 3 ((𝑋𝑉𝑓 ∈ (𝑋m (𝑋 × 𝑋))) → ∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔))
6261ralrimiva 3147 . 2 (𝑋𝑉 → ∀𝑓 ∈ (𝑋m (𝑋 × 𝑋))∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔))
63 dffo3 7104 . 2 (𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)) ↔ (𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)) ∧ ∀𝑓 ∈ (𝑋m (𝑋 × 𝑋))∃𝑔 ∈ (2-aryF 𝑋)𝑓 = (𝐻𝑔)))
642, 62, 63sylanbrc 584 1 (𝑋𝑉𝐻:(2-aryF 𝑋)–onto→(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  Vcvv 3475  wss 3949  {cpr 4631  cop 4635  cmpt 5232   × cxp 5675   Fn wfn 6539  wf 6540  ontowfo 6542  cfv 6544  (class class class)co 7409  cmpo 7411  m cmap 8820  0cc0 11110  1c1 11111  2c2 12267  -aryF cnaryf 47312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-naryf 47313
This theorem is referenced by:  2arymaptf1o  47341
  Copyright terms: Public domain W3C validator