![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpts | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmpts.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐶 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmpts | ⊢ ((𝐴 ∈ 𝐶 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3910 | . 2 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | fvmpts.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶 ↦ 𝐵) | |
3 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑦𝐵 | |
4 | nfcsb1v 3932 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | csbeq1a 3921 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
6 | 3, 4, 5 | cbvmpt 5258 | . . 3 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
7 | 2, 6 | eqtri 2762 | . 2 ⊢ 𝐹 = (𝑦 ∈ 𝐶 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
8 | 1, 7 | fvmptg 7013 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ⦋csb 3907 ↦ cmpt 5230 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 |
This theorem is referenced by: fvmptdf 7021 fvmpocurryd 8294 mptnn0fsupp 14034 mptnn0fsuppr 14036 zsum 15750 prodss 15979 fprodser 15981 fprodn0 16011 fprodefsum 16127 pcmpt 16925 issubc 17885 gsummptnn0fz 20018 mptscmfsupp0 20941 gsummoncoe1 22327 fvmptnn04if 22870 prdsdsf 24392 itgparts 26102 dchrisumlema 27546 abfmpeld 32670 abfmpel 32671 cdlemk40 40899 deg1gprod 42121 aomclem6 43047 ellimcabssub0 45572 constlimc 45579 vonn0ioo2 46645 vonn0icc2 46647 |
Copyright terms: Public domain | W3C validator |