MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpts Structured version   Visualization version   GIF version

Theorem fvmpts 7019
Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fvmpts.1 𝐹 = (𝑥𝐶𝐵)
Assertion
Ref Expression
fvmpts ((𝐴𝐶𝐴 / 𝑥𝐵𝑉) → (𝐹𝐴) = 𝐴 / 𝑥𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpts
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3902 . 2 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
2 fvmpts.1 . . 3 𝐹 = (𝑥𝐶𝐵)
3 nfcv 2905 . . . 4 𝑦𝐵
4 nfcsb1v 3923 . . . 4 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3913 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbvmpt 5253 . . 3 (𝑥𝐶𝐵) = (𝑦𝐶𝑦 / 𝑥𝐵)
72, 6eqtri 2765 . 2 𝐹 = (𝑦𝐶𝑦 / 𝑥𝐵)
81, 7fvmptg 7014 1 ((𝐴𝐶𝐴 / 𝑥𝐵𝑉) → (𝐹𝐴) = 𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  csb 3899  cmpt 5225  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569
This theorem is referenced by:  fvmptdf  7022  fvmpocurryd  8296  mptnn0fsupp  14038  mptnn0fsuppr  14040  zsum  15754  prodss  15983  fprodser  15985  fprodn0  16015  fprodefsum  16131  pcmpt  16930  issubc  17880  gsummptnn0fz  20004  mptscmfsupp0  20925  gsummoncoe1  22312  fvmptnn04if  22855  prdsdsf  24377  itgparts  26088  dchrisumlema  27532  abfmpeld  32664  abfmpel  32665  cdlemk40  40919  deg1gprod  42141  aomclem6  43071  ellimcabssub0  45632  constlimc  45639  vonn0ioo2  46705  vonn0icc2  46707
  Copyright terms: Public domain W3C validator