![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpts | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmpts.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐶 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmpts | ⊢ ((𝐴 ∈ 𝐶 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3897 | . 2 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | fvmpts.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶 ↦ 𝐵) | |
3 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑦𝐵 | |
4 | nfcsb1v 3919 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | csbeq1a 3908 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
6 | 3, 4, 5 | cbvmpt 5260 | . . 3 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
7 | 2, 6 | eqtri 2761 | . 2 ⊢ 𝐹 = (𝑦 ∈ 𝐶 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
8 | 1, 7 | fvmptg 6997 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⦋csb 3894 ↦ cmpt 5232 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 |
This theorem is referenced by: fvmptdf 7005 fvmpocurryd 8256 mptnn0fsupp 13962 mptnn0fsuppr 13964 zsum 15664 prodss 15891 fprodser 15893 fprodn0 15923 fprodefsum 16038 pcmpt 16825 issubc 17785 gsummptnn0fz 19854 mptscmfsupp0 20537 gsummoncoe1 21828 fvmptnn04if 22351 prdsdsf 23873 itgparts 25564 dchrisumlema 26991 abfmpeld 31879 abfmpel 31880 cdlemk40 39788 aomclem6 41801 ellimcabssub0 44333 constlimc 44340 vonn0ioo2 45406 vonn0icc2 45408 |
Copyright terms: Public domain | W3C validator |