Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptfo Structured version   Visualization version   GIF version

Theorem 1arymaptfo 48629
Description: The mapping of unary (endo)functions is a function onto the set of endofunctions. (Contributed by AV, 18-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptfo (𝑋𝑉𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋))
Distinct variable groups:   𝑥,,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptfo
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arymaptfv.h . . 3 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
211arymaptf 48627 . 2 (𝑋𝑉𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋))
3 elmapi 8783 . . . . 5 (𝑓 ∈ (𝑋m 𝑋) → 𝑓:𝑋𝑋)
4 eqid 2729 . . . . . 6 (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
541arympt1 48624 . . . . 5 ((𝑋𝑉𝑓:𝑋𝑋) → (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) ∈ (1-aryF 𝑋))
63, 5sylan2 593 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) ∈ (1-aryF 𝑋))
7 fveq2 6826 . . . . . 6 (𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) → (𝐻𝑔) = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))))
87eqeq2d 2740 . . . . 5 (𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))))
98adantl 481 . . . 4 (((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ 𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))))
103adantl 481 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓:𝑋𝑋)
1110feqmptd 6895 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓 = (𝑥𝑋 ↦ (𝑓𝑥)))
12 simplr 768 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))
13 fveq1 6825 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩} → (𝑎‘0) = ({⟨0, 𝑥⟩}‘0))
14 c0ex 11128 . . . . . . . . . . . 12 0 ∈ V
15 vex 3442 . . . . . . . . . . . 12 𝑥 ∈ V
1614, 15fvsn 7121 . . . . . . . . . . 11 ({⟨0, 𝑥⟩}‘0) = 𝑥
1713, 16eqtrdi 2780 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩} → (𝑎‘0) = 𝑥)
1817fveq2d 6830 . . . . . . . . 9 (𝑎 = {⟨0, 𝑥⟩} → (𝑓‘(𝑎‘0)) = (𝑓𝑥))
1918adantl 481 . . . . . . . 8 (((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) ∧ 𝑎 = {⟨0, 𝑥⟩}) → (𝑓‘(𝑎‘0)) = (𝑓𝑥))
2014a1i 11 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋) → 0 ∈ V)
21 simpr 484 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋) → 𝑥𝑋)
2220, 21fsnd 6811 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋) → {⟨0, 𝑥⟩}:{0}⟶𝑋)
23 snex 5378 . . . . . . . . . . . 12 {0} ∈ V
2423a1i 11 . . . . . . . . . . 11 (𝑥𝑋 → {0} ∈ V)
25 elmapg 8773 . . . . . . . . . . 11 ((𝑋𝑉 ∧ {0} ∈ V) → ({⟨0, 𝑥⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝑥⟩}:{0}⟶𝑋))
2624, 25sylan2 593 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋) → ({⟨0, 𝑥⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝑥⟩}:{0}⟶𝑋))
2722, 26mpbird 257 . . . . . . . . 9 ((𝑋𝑉𝑥𝑋) → {⟨0, 𝑥⟩} ∈ (𝑋m {0}))
2827ad4ant14 752 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → {⟨0, 𝑥⟩} ∈ (𝑋m {0}))
29 fvexd 6841 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ V)
30 nfv 1914 . . . . . . . . . 10 𝑎(𝑋𝑉𝑓 ∈ (𝑋m 𝑋))
31 nfmpt1 5194 . . . . . . . . . . 11 𝑎(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
3231nfeq2 2909 . . . . . . . . . 10 𝑎 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
3330, 32nfan 1899 . . . . . . . . 9 𝑎((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))
34 nfv 1914 . . . . . . . . 9 𝑎 𝑥𝑋
3533, 34nfan 1899 . . . . . . . 8 𝑎(((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋)
36 nfcv 2891 . . . . . . . 8 𝑎{⟨0, 𝑥⟩}
37 nfcv 2891 . . . . . . . 8 𝑎(𝑓𝑥)
3812, 19, 28, 29, 35, 36, 37fvmptdf 6940 . . . . . . 7 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → (‘{⟨0, 𝑥⟩}) = (𝑓𝑥))
3938mpteq2dva 5188 . . . . . 6 (((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) → (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑓𝑥)))
40 simpl 482 . . . . . . 7 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑋𝑉)
4140mptexd 7164 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝑥𝑋 ↦ (𝑓𝑥)) ∈ V)
421, 39, 6, 41fvmptd2 6942 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) = (𝑥𝑋 ↦ (𝑓𝑥)))
4311, 42eqtr4d 2767 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))))
446, 9, 43rspcedvd 3581 . . 3 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → ∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔))
4544ralrimiva 3121 . 2 (𝑋𝑉 → ∀𝑓 ∈ (𝑋m 𝑋)∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔))
46 dffo3 7040 . 2 (𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋) ↔ (𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋) ∧ ∀𝑓 ∈ (𝑋m 𝑋)∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔)))
472, 45, 46sylanbrc 583 1 (𝑋𝑉𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  {csn 4579  cop 4585  cmpt 5176  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353  m cmap 8760  0cc0 11028  1c1 11029  -aryF cnaryf 48612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-naryf 48613
This theorem is referenced by:  1arymaptf1o  48630
  Copyright terms: Public domain W3C validator