Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptfo Structured version   Visualization version   GIF version

Theorem 1arymaptfo 47041
Description: The mapping of unary (endo)functions is a function onto the set of endofunctions. (Contributed by AV, 18-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptfo (𝑋𝑉𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋))
Distinct variable groups:   𝑥,,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptfo
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arymaptfv.h . . 3 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
211arymaptf 47039 . 2 (𝑋𝑉𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋))
3 elmapi 8828 . . . . 5 (𝑓 ∈ (𝑋m 𝑋) → 𝑓:𝑋𝑋)
4 eqid 2732 . . . . . 6 (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
541arympt1 47036 . . . . 5 ((𝑋𝑉𝑓:𝑋𝑋) → (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) ∈ (1-aryF 𝑋))
63, 5sylan2 593 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) ∈ (1-aryF 𝑋))
7 fveq2 6879 . . . . . 6 (𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) → (𝐻𝑔) = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))))
87eqeq2d 2743 . . . . 5 (𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))))
98adantl 482 . . . 4 (((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ 𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))))
103adantl 482 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓:𝑋𝑋)
1110feqmptd 6947 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓 = (𝑥𝑋 ↦ (𝑓𝑥)))
12 simplr 767 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))
13 fveq1 6878 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩} → (𝑎‘0) = ({⟨0, 𝑥⟩}‘0))
14 c0ex 11192 . . . . . . . . . . . 12 0 ∈ V
15 vex 3478 . . . . . . . . . . . 12 𝑥 ∈ V
1614, 15fvsn 7164 . . . . . . . . . . 11 ({⟨0, 𝑥⟩}‘0) = 𝑥
1713, 16eqtrdi 2788 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩} → (𝑎‘0) = 𝑥)
1817fveq2d 6883 . . . . . . . . 9 (𝑎 = {⟨0, 𝑥⟩} → (𝑓‘(𝑎‘0)) = (𝑓𝑥))
1918adantl 482 . . . . . . . 8 (((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) ∧ 𝑎 = {⟨0, 𝑥⟩}) → (𝑓‘(𝑎‘0)) = (𝑓𝑥))
2014a1i 11 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋) → 0 ∈ V)
21 simpr 485 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋) → 𝑥𝑋)
2220, 21fsnd 6864 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋) → {⟨0, 𝑥⟩}:{0}⟶𝑋)
23 snex 5425 . . . . . . . . . . . 12 {0} ∈ V
2423a1i 11 . . . . . . . . . . 11 (𝑥𝑋 → {0} ∈ V)
25 elmapg 8818 . . . . . . . . . . 11 ((𝑋𝑉 ∧ {0} ∈ V) → ({⟨0, 𝑥⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝑥⟩}:{0}⟶𝑋))
2624, 25sylan2 593 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋) → ({⟨0, 𝑥⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝑥⟩}:{0}⟶𝑋))
2722, 26mpbird 256 . . . . . . . . 9 ((𝑋𝑉𝑥𝑋) → {⟨0, 𝑥⟩} ∈ (𝑋m {0}))
2827ad4ant14 750 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → {⟨0, 𝑥⟩} ∈ (𝑋m {0}))
29 fvexd 6894 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ V)
30 nfv 1917 . . . . . . . . . 10 𝑎(𝑋𝑉𝑓 ∈ (𝑋m 𝑋))
31 nfmpt1 5250 . . . . . . . . . . 11 𝑎(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
3231nfeq2 2920 . . . . . . . . . 10 𝑎 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
3330, 32nfan 1902 . . . . . . . . 9 𝑎((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))
34 nfv 1917 . . . . . . . . 9 𝑎 𝑥𝑋
3533, 34nfan 1902 . . . . . . . 8 𝑎(((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋)
36 nfcv 2903 . . . . . . . 8 𝑎{⟨0, 𝑥⟩}
37 nfcv 2903 . . . . . . . 8 𝑎(𝑓𝑥)
3812, 19, 28, 29, 35, 36, 37fvmptdf 6991 . . . . . . 7 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → (‘{⟨0, 𝑥⟩}) = (𝑓𝑥))
3938mpteq2dva 5242 . . . . . 6 (((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) → (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑓𝑥)))
40 simpl 483 . . . . . . 7 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑋𝑉)
4140mptexd 7211 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝑥𝑋 ↦ (𝑓𝑥)) ∈ V)
421, 39, 6, 41fvmptd2 6993 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) = (𝑥𝑋 ↦ (𝑓𝑥)))
4311, 42eqtr4d 2775 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))))
446, 9, 43rspcedvd 3612 . . 3 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → ∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔))
4544ralrimiva 3146 . 2 (𝑋𝑉 → ∀𝑓 ∈ (𝑋m 𝑋)∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔))
46 dffo3 7089 . 2 (𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋) ↔ (𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋) ∧ ∀𝑓 ∈ (𝑋m 𝑋)∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔)))
472, 45, 46sylanbrc 583 1 (𝑋𝑉𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  {csn 4623  cop 4629  cmpt 5225  wf 6529  ontowfo 6531  cfv 6533  (class class class)co 7394  m cmap 8805  0cc0 11094  1c1 11095  -aryF cnaryf 47024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-map 8807  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-n0 12457  df-z 12543  df-uz 12807  df-fz 13469  df-fzo 13612  df-naryf 47025
This theorem is referenced by:  1arymaptf1o  47042
  Copyright terms: Public domain W3C validator