Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptfo Structured version   Visualization version   GIF version

Theorem 1arymaptfo 45407
Description: The mapping of unary (endo)functions is a function onto the set of endofunctions. (Contributed by AV, 18-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptfo (𝑋𝑉𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋))
Distinct variable groups:   𝑥,,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptfo
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arymaptfv.h . . 3 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
211arymaptf 45405 . 2 (𝑋𝑉𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋))
3 elmapi 8431 . . . . 5 (𝑓 ∈ (𝑋m 𝑋) → 𝑓:𝑋𝑋)
4 eqid 2759 . . . . . 6 (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
541arympt1 45402 . . . . 5 ((𝑋𝑉𝑓:𝑋𝑋) → (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) ∈ (1-aryF 𝑋))
63, 5sylan2 596 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) ∈ (1-aryF 𝑋))
7 fveq2 6651 . . . . . 6 (𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) → (𝐻𝑔) = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))))
87eqeq2d 2770 . . . . 5 (𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))))
98adantl 486 . . . 4 (((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ 𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))))
103adantl 486 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓:𝑋𝑋)
1110feqmptd 6714 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓 = (𝑥𝑋 ↦ (𝑓𝑥)))
12 simplr 769 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))
13 fveq1 6650 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩} → (𝑎‘0) = ({⟨0, 𝑥⟩}‘0))
14 c0ex 10658 . . . . . . . . . . . 12 0 ∈ V
15 vex 3411 . . . . . . . . . . . 12 𝑥 ∈ V
1614, 15fvsn 6927 . . . . . . . . . . 11 ({⟨0, 𝑥⟩}‘0) = 𝑥
1713, 16eqtrdi 2810 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩} → (𝑎‘0) = 𝑥)
1817fveq2d 6655 . . . . . . . . 9 (𝑎 = {⟨0, 𝑥⟩} → (𝑓‘(𝑎‘0)) = (𝑓𝑥))
1918adantl 486 . . . . . . . 8 (((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) ∧ 𝑎 = {⟨0, 𝑥⟩}) → (𝑓‘(𝑎‘0)) = (𝑓𝑥))
2014a1i 11 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋) → 0 ∈ V)
21 simpr 489 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋) → 𝑥𝑋)
2220, 21fsnd 6637 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋) → {⟨0, 𝑥⟩}:{0}⟶𝑋)
23 snex 5293 . . . . . . . . . . . 12 {0} ∈ V
2423a1i 11 . . . . . . . . . . 11 (𝑥𝑋 → {0} ∈ V)
25 elmapg 8422 . . . . . . . . . . 11 ((𝑋𝑉 ∧ {0} ∈ V) → ({⟨0, 𝑥⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝑥⟩}:{0}⟶𝑋))
2624, 25sylan2 596 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋) → ({⟨0, 𝑥⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝑥⟩}:{0}⟶𝑋))
2722, 26mpbird 260 . . . . . . . . 9 ((𝑋𝑉𝑥𝑋) → {⟨0, 𝑥⟩} ∈ (𝑋m {0}))
2827ad4ant14 752 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → {⟨0, 𝑥⟩} ∈ (𝑋m {0}))
29 fvexd 6666 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ V)
30 nfv 1916 . . . . . . . . . 10 𝑎(𝑋𝑉𝑓 ∈ (𝑋m 𝑋))
31 nfmpt1 5123 . . . . . . . . . . 11 𝑎(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
3231nfeq2 2934 . . . . . . . . . 10 𝑎 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
3330, 32nfan 1901 . . . . . . . . 9 𝑎((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))
34 nfv 1916 . . . . . . . . 9 𝑎 𝑥𝑋
3533, 34nfan 1901 . . . . . . . 8 𝑎(((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋)
36 nfcv 2917 . . . . . . . 8 𝑎{⟨0, 𝑥⟩}
37 nfcv 2917 . . . . . . . 8 𝑎(𝑓𝑥)
3812, 19, 28, 29, 35, 36, 37fvmptdf 6758 . . . . . . 7 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → (‘{⟨0, 𝑥⟩}) = (𝑓𝑥))
3938mpteq2dva 5120 . . . . . 6 (((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) → (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑓𝑥)))
40 simpl 487 . . . . . . 7 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑋𝑉)
4140mptexd 6971 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝑥𝑋 ↦ (𝑓𝑥)) ∈ V)
421, 39, 6, 41fvmptd2 6760 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) = (𝑥𝑋 ↦ (𝑓𝑥)))
4311, 42eqtr4d 2797 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))))
446, 9, 43rspcedvd 3542 . . 3 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → ∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔))
4544ralrimiva 3111 . 2 (𝑋𝑉 → ∀𝑓 ∈ (𝑋m 𝑋)∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔))
46 dffo3 6852 . 2 (𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋) ↔ (𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋) ∧ ∀𝑓 ∈ (𝑋m 𝑋)∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔)))
472, 45, 46sylanbrc 587 1 (𝑋𝑉𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wral 3068  wrex 3069  Vcvv 3407  {csn 4515  cop 4521  cmpt 5105  wf 6324  ontowfo 6326  cfv 6328  (class class class)co 7143  m cmap 8409  0cc0 10560  1c1 10561  -aryF cnaryf 45390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925  df-fzo 13068  df-naryf 45391
This theorem is referenced by:  1arymaptf1o  45408
  Copyright terms: Public domain W3C validator