Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptfo Structured version   Visualization version   GIF version

Theorem 1arymaptfo 48674
Description: The mapping of unary (endo)functions is a function onto the set of endofunctions. (Contributed by AV, 18-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptfo (𝑋𝑉𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋))
Distinct variable groups:   𝑥,,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptfo
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arymaptfv.h . . 3 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
211arymaptf 48672 . 2 (𝑋𝑉𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋))
3 elmapi 8773 . . . . 5 (𝑓 ∈ (𝑋m 𝑋) → 𝑓:𝑋𝑋)
4 eqid 2731 . . . . . 6 (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
541arympt1 48669 . . . . 5 ((𝑋𝑉𝑓:𝑋𝑋) → (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) ∈ (1-aryF 𝑋))
63, 5sylan2 593 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) ∈ (1-aryF 𝑋))
7 fveq2 6822 . . . . . 6 (𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) → (𝐻𝑔) = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))))
87eqeq2d 2742 . . . . 5 (𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))))
98adantl 481 . . . 4 (((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ 𝑔 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) → (𝑓 = (𝐻𝑔) ↔ 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))))
103adantl 481 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓:𝑋𝑋)
1110feqmptd 6890 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓 = (𝑥𝑋 ↦ (𝑓𝑥)))
12 simplr 768 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))
13 fveq1 6821 . . . . . . . . . . 11 (𝑎 = {⟨0, 𝑥⟩} → (𝑎‘0) = ({⟨0, 𝑥⟩}‘0))
14 c0ex 11103 . . . . . . . . . . . 12 0 ∈ V
15 vex 3440 . . . . . . . . . . . 12 𝑥 ∈ V
1614, 15fvsn 7115 . . . . . . . . . . 11 ({⟨0, 𝑥⟩}‘0) = 𝑥
1713, 16eqtrdi 2782 . . . . . . . . . 10 (𝑎 = {⟨0, 𝑥⟩} → (𝑎‘0) = 𝑥)
1817fveq2d 6826 . . . . . . . . 9 (𝑎 = {⟨0, 𝑥⟩} → (𝑓‘(𝑎‘0)) = (𝑓𝑥))
1918adantl 481 . . . . . . . 8 (((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) ∧ 𝑎 = {⟨0, 𝑥⟩}) → (𝑓‘(𝑎‘0)) = (𝑓𝑥))
2014a1i 11 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋) → 0 ∈ V)
21 simpr 484 . . . . . . . . . . 11 ((𝑋𝑉𝑥𝑋) → 𝑥𝑋)
2220, 21fsnd 6806 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋) → {⟨0, 𝑥⟩}:{0}⟶𝑋)
23 snex 5374 . . . . . . . . . . . 12 {0} ∈ V
2423a1i 11 . . . . . . . . . . 11 (𝑥𝑋 → {0} ∈ V)
25 elmapg 8763 . . . . . . . . . . 11 ((𝑋𝑉 ∧ {0} ∈ V) → ({⟨0, 𝑥⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝑥⟩}:{0}⟶𝑋))
2624, 25sylan2 593 . . . . . . . . . 10 ((𝑋𝑉𝑥𝑋) → ({⟨0, 𝑥⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝑥⟩}:{0}⟶𝑋))
2722, 26mpbird 257 . . . . . . . . 9 ((𝑋𝑉𝑥𝑋) → {⟨0, 𝑥⟩} ∈ (𝑋m {0}))
2827ad4ant14 752 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → {⟨0, 𝑥⟩} ∈ (𝑋m {0}))
29 fvexd 6837 . . . . . . . 8 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ V)
30 nfv 1915 . . . . . . . . . 10 𝑎(𝑋𝑉𝑓 ∈ (𝑋m 𝑋))
31 nfmpt1 5190 . . . . . . . . . . 11 𝑎(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
3231nfeq2 2912 . . . . . . . . . 10 𝑎 = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))
3330, 32nfan 1900 . . . . . . . . 9 𝑎((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0))))
34 nfv 1915 . . . . . . . . 9 𝑎 𝑥𝑋
3533, 34nfan 1900 . . . . . . . 8 𝑎(((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋)
36 nfcv 2894 . . . . . . . 8 𝑎{⟨0, 𝑥⟩}
37 nfcv 2894 . . . . . . . 8 𝑎(𝑓𝑥)
3812, 19, 28, 29, 35, 36, 37fvmptdf 6935 . . . . . . 7 ((((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) ∧ 𝑥𝑋) → (‘{⟨0, 𝑥⟩}) = (𝑓𝑥))
3938mpteq2dva 5184 . . . . . 6 (((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) ∧ = (𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) → (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑓𝑥)))
40 simpl 482 . . . . . . 7 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑋𝑉)
4140mptexd 7158 . . . . . 6 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝑥𝑋 ↦ (𝑓𝑥)) ∈ V)
421, 39, 6, 41fvmptd2 6937 . . . . 5 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))) = (𝑥𝑋 ↦ (𝑓𝑥)))
4311, 42eqtr4d 2769 . . . 4 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → 𝑓 = (𝐻‘(𝑎 ∈ (𝑋m {0}) ↦ (𝑓‘(𝑎‘0)))))
446, 9, 43rspcedvd 3579 . . 3 ((𝑋𝑉𝑓 ∈ (𝑋m 𝑋)) → ∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔))
4544ralrimiva 3124 . 2 (𝑋𝑉 → ∀𝑓 ∈ (𝑋m 𝑋)∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔))
46 dffo3 7035 . 2 (𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋) ↔ (𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋) ∧ ∀𝑓 ∈ (𝑋m 𝑋)∃𝑔 ∈ (1-aryF 𝑋)𝑓 = (𝐻𝑔)))
472, 45, 46sylanbrc 583 1 (𝑋𝑉𝐻:(1-aryF 𝑋)–onto→(𝑋m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  {csn 4576  cop 4582  cmpt 5172  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  m cmap 8750  0cc0 11003  1c1 11004  -aryF cnaryf 48657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-naryf 48658
This theorem is referenced by:  1arymaptf1o  48675
  Copyright terms: Public domain W3C validator