| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| fvmpt3i.c | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
| 5 | 1, 2, 4 | fvmpt3 6975 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: isf32lem9 10321 axcc2lem 10396 caucvg 15652 ismre 17558 mrisval 17598 frmdup1 18798 frmdup2 18799 qusghm 19194 pmtrfval 19387 odf1 19499 vrgpfval 19703 dprdz 19969 dmdprdsplitlem 19976 dprd2dlem2 19979 dprd2dlem1 19980 dprd2da 19981 ablfac1a 20008 ablfac1b 20009 ablfac1eu 20012 ipdir 21555 ipass 21561 isphld 21570 istopon 22806 qustgpopn 24014 qustgplem 24015 tcphcph 25144 cmvth 25902 cmvthOLD 25903 mvth 25904 dvle 25919 lhop1 25926 dvfsumlem3 25942 pige3ALT 26436 fsumdvdscom 27102 logfacbnd3 27141 dchrptlem1 27182 dchrptlem2 27183 lgsdchrval 27272 dchrisumlem3 27409 dchrisum0flblem1 27426 dchrisum0fno1 27429 dchrisum0lem1b 27433 dchrisum0lem2a 27435 dchrisum0lem2 27436 logsqvma2 27461 log2sumbnd 27462 zringfrac 33532 measdivcst 34221 measdivcstALTV 34222 mrexval 35495 mexval 35496 mdvval 35498 msubvrs 35554 mthmval 35569 weiunlem2 36458 f1omptsnlem 37331 upixp 37730 ismrer1 37839 frlmsnic 42535 fsuppind 42585 uzmptshftfval 44342 tposideq 48880 fucocolem2 49347 amgmwlem 49795 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |