| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| fvmpt3i.c | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
| 5 | 1, 2, 4 | fvmpt3 6990 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ↦ cmpt 5201 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 |
| This theorem is referenced by: isf32lem9 10375 axcc2lem 10450 caucvg 15695 ismre 17602 mrisval 17642 frmdup1 18842 frmdup2 18843 qusghm 19238 pmtrfval 19431 odf1 19543 vrgpfval 19747 dprdz 20013 dmdprdsplitlem 20020 dprd2dlem2 20023 dprd2dlem1 20024 dprd2da 20025 ablfac1a 20052 ablfac1b 20053 ablfac1eu 20056 ipdir 21599 ipass 21605 isphld 21614 istopon 22850 qustgpopn 24058 qustgplem 24059 tcphcph 25189 cmvth 25947 cmvthOLD 25948 mvth 25949 dvle 25964 lhop1 25971 dvfsumlem3 25987 pige3ALT 26481 fsumdvdscom 27147 logfacbnd3 27186 dchrptlem1 27227 dchrptlem2 27228 lgsdchrval 27317 dchrisumlem3 27454 dchrisum0flblem1 27471 dchrisum0fno1 27474 dchrisum0lem1b 27478 dchrisum0lem2a 27480 dchrisum0lem2 27481 logsqvma2 27506 log2sumbnd 27507 zringfrac 33569 measdivcst 34255 measdivcstALTV 34256 mrexval 35523 mexval 35524 mdvval 35526 msubvrs 35582 mthmval 35597 weiunlem2 36481 f1omptsnlem 37354 upixp 37753 ismrer1 37862 frlmsnic 42563 fsuppind 42613 uzmptshftfval 44370 tposideq 48863 fucocolem2 49265 amgmwlem 49666 amgmlemALT 49667 |
| Copyright terms: Public domain | W3C validator |