![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmpt3i.c | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
5 | 1, 2, 4 | fvmpt3 7019 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ↦ cmpt 5230 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 |
This theorem is referenced by: isf32lem9 10398 axcc2lem 10473 caucvg 15711 ismre 17634 mrisval 17674 frmdup1 18889 frmdup2 18890 qusghm 19285 pmtrfval 19482 odf1 19594 vrgpfval 19798 dprdz 20064 dmdprdsplitlem 20071 dprd2dlem2 20074 dprd2dlem1 20075 dprd2da 20076 ablfac1a 20103 ablfac1b 20104 ablfac1eu 20107 ipdir 21674 ipass 21680 isphld 21689 istopon 22933 qustgpopn 24143 qustgplem 24144 tcphcph 25284 cmvth 26043 cmvthOLD 26044 mvth 26045 dvle 26060 lhop1 26067 dvfsumlem3 26083 pige3ALT 26576 fsumdvdscom 27242 logfacbnd3 27281 dchrptlem1 27322 dchrptlem2 27323 lgsdchrval 27412 dchrisumlem3 27549 dchrisum0flblem1 27566 dchrisum0fno1 27569 dchrisum0lem1b 27573 dchrisum0lem2a 27575 dchrisum0lem2 27576 logsqvma2 27601 log2sumbnd 27602 zringfrac 33561 measdivcst 34204 measdivcstALTV 34205 mrexval 35485 mexval 35486 mdvval 35488 msubvrs 35544 mthmval 35559 weiunlem2 36445 f1omptsnlem 37318 upixp 37715 ismrer1 37824 frlmsnic 42526 fsuppind 42576 uzmptshftfval 44341 amgmwlem 49032 amgmlemALT 49033 |
Copyright terms: Public domain | W3C validator |