| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| fvmpt3i.c | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
| 5 | 1, 2, 4 | fvmpt3 6933 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: isf32lem9 10252 axcc2lem 10327 caucvg 15586 ismre 17492 mrisval 17536 frmdup1 18772 frmdup2 18773 qusghm 19167 pmtrfval 19362 odf1 19474 vrgpfval 19678 dprdz 19944 dmdprdsplitlem 19951 dprd2dlem2 19954 dprd2dlem1 19955 dprd2da 19956 ablfac1a 19983 ablfac1b 19984 ablfac1eu 19987 ipdir 21576 ipass 21582 isphld 21591 istopon 22827 qustgpopn 24035 qustgplem 24036 tcphcph 25164 cmvth 25922 cmvthOLD 25923 mvth 25924 dvle 25939 lhop1 25946 dvfsumlem3 25962 pige3ALT 26456 fsumdvdscom 27122 logfacbnd3 27161 dchrptlem1 27202 dchrptlem2 27203 lgsdchrval 27292 dchrisumlem3 27429 dchrisum0flblem1 27446 dchrisum0fno1 27449 dchrisum0lem1b 27453 dchrisum0lem2a 27455 dchrisum0lem2 27456 logsqvma2 27481 log2sumbnd 27482 zringfrac 33519 measdivcst 34237 measdivcstALTV 34238 mrexval 35545 mexval 35546 mdvval 35548 msubvrs 35604 mthmval 35619 weiunlem2 36505 f1omptsnlem 37378 upixp 37777 ismrer1 37886 frlmsnic 42581 fsuppind 42631 uzmptshftfval 44387 tposideq 48927 fucocolem2 49394 amgmwlem 49842 amgmlemALT 49843 |
| Copyright terms: Public domain | W3C validator |