Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmpt3i.c | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
5 | 1, 2, 4 | fvmpt3 6858 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ↦ cmpt 5152 ‘cfv 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-iota 6373 df-fun 6417 df-fv 6423 |
This theorem is referenced by: isf32lem9 10023 axcc2lem 10098 caucvg 15293 ismre 17191 mrisval 17231 frmdup1 18393 frmdup2 18394 qusghm 18761 pmtrfval 18948 odf1 19059 vrgpfval 19262 dprdz 19523 dmdprdsplitlem 19530 dprd2dlem2 19533 dprd2dlem1 19534 dprd2da 19535 ablfac1a 19562 ablfac1b 19563 ablfac1eu 19566 ipdir 20731 ipass 20737 isphld 20746 istopon 21944 qustgpopn 23154 qustgplem 23155 tcphcph 24281 cmvth 25035 mvth 25036 dvle 25051 lhop1 25058 dvfsumlem3 25072 pige3ALT 25556 fsumdvdscom 26214 logfacbnd3 26251 dchrptlem1 26292 dchrptlem2 26293 lgsdchrval 26382 dchrisumlem3 26519 dchrisum0flblem1 26536 dchrisum0fno1 26539 dchrisum0lem1b 26543 dchrisum0lem2a 26545 dchrisum0lem2 26546 logsqvma2 26571 log2sumbnd 26572 measdivcst 32067 measdivcstALTV 32068 mrexval 33338 mexval 33339 mdvval 33341 msubvrs 33397 mthmval 33412 f1omptsnlem 35413 upixp 35793 ismrer1 35902 frlmsnic 40160 fsuppind 40174 uzmptshftfval 41826 amgmwlem 46365 amgmlemALT 46366 |
Copyright terms: Public domain | W3C validator |