Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmpt3i.c | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
5 | 1, 2, 4 | fvmpt3 6939 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ↦ cmpt 5179 ‘cfv 6483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-iota 6435 df-fun 6485 df-fv 6491 |
This theorem is referenced by: isf32lem9 10222 axcc2lem 10297 caucvg 15489 ismre 17396 mrisval 17436 frmdup1 18599 frmdup2 18600 qusghm 18967 pmtrfval 19154 odf1 19265 vrgpfval 19467 dprdz 19727 dmdprdsplitlem 19734 dprd2dlem2 19737 dprd2dlem1 19738 dprd2da 19739 ablfac1a 19766 ablfac1b 19767 ablfac1eu 19770 ipdir 20949 ipass 20955 isphld 20964 istopon 22166 qustgpopn 23376 qustgplem 23377 tcphcph 24506 cmvth 25260 mvth 25261 dvle 25276 lhop1 25283 dvfsumlem3 25297 pige3ALT 25781 fsumdvdscom 26439 logfacbnd3 26476 dchrptlem1 26517 dchrptlem2 26518 lgsdchrval 26607 dchrisumlem3 26744 dchrisum0flblem1 26761 dchrisum0fno1 26764 dchrisum0lem1b 26768 dchrisum0lem2a 26770 dchrisum0lem2 26771 logsqvma2 26796 log2sumbnd 26797 measdivcst 32488 measdivcstALTV 32489 mrexval 33760 mexval 33761 mdvval 33763 msubvrs 33819 mthmval 33834 f1omptsnlem 35661 upixp 36043 ismrer1 36152 frlmsnic 40574 fsuppind 40590 uzmptshftfval 42337 amgmwlem 46924 amgmlemALT 46925 |
Copyright terms: Public domain | W3C validator |