| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| fvmpt3i.c | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
| 5 | 1, 2, 4 | fvmpt3 6954 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ↦ cmpt 5183 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 |
| This theorem is referenced by: isf32lem9 10290 axcc2lem 10365 caucvg 15621 ismre 17527 mrisval 17571 frmdup1 18773 frmdup2 18774 qusghm 19169 pmtrfval 19364 odf1 19476 vrgpfval 19680 dprdz 19946 dmdprdsplitlem 19953 dprd2dlem2 19956 dprd2dlem1 19957 dprd2da 19958 ablfac1a 19985 ablfac1b 19986 ablfac1eu 19989 ipdir 21581 ipass 21587 isphld 21596 istopon 22832 qustgpopn 24040 qustgplem 24041 tcphcph 25170 cmvth 25928 cmvthOLD 25929 mvth 25930 dvle 25945 lhop1 25952 dvfsumlem3 25968 pige3ALT 26462 fsumdvdscom 27128 logfacbnd3 27167 dchrptlem1 27208 dchrptlem2 27209 lgsdchrval 27298 dchrisumlem3 27435 dchrisum0flblem1 27452 dchrisum0fno1 27455 dchrisum0lem1b 27459 dchrisum0lem2a 27461 dchrisum0lem2 27462 logsqvma2 27487 log2sumbnd 27488 zringfrac 33518 measdivcst 34207 measdivcstALTV 34208 mrexval 35481 mexval 35482 mdvval 35484 msubvrs 35540 mthmval 35555 weiunlem2 36444 f1omptsnlem 37317 upixp 37716 ismrer1 37825 frlmsnic 42521 fsuppind 42571 uzmptshftfval 44328 tposideq 48869 fucocolem2 49336 amgmwlem 49784 amgmlemALT 49785 |
| Copyright terms: Public domain | W3C validator |