![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmpt3i.c | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
5 | 1, 2, 4 | fvmpt3 7033 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: isf32lem9 10430 axcc2lem 10505 caucvg 15727 ismre 17648 mrisval 17688 frmdup1 18899 frmdup2 18900 qusghm 19295 pmtrfval 19492 odf1 19604 vrgpfval 19808 dprdz 20074 dmdprdsplitlem 20081 dprd2dlem2 20084 dprd2dlem1 20085 dprd2da 20086 ablfac1a 20113 ablfac1b 20114 ablfac1eu 20117 ipdir 21680 ipass 21686 isphld 21695 istopon 22939 qustgpopn 24149 qustgplem 24150 tcphcph 25290 cmvth 26049 cmvthOLD 26050 mvth 26051 dvle 26066 lhop1 26073 dvfsumlem3 26089 pige3ALT 26580 fsumdvdscom 27246 logfacbnd3 27285 dchrptlem1 27326 dchrptlem2 27327 lgsdchrval 27416 dchrisumlem3 27553 dchrisum0flblem1 27570 dchrisum0fno1 27573 dchrisum0lem1b 27577 dchrisum0lem2a 27579 dchrisum0lem2 27580 logsqvma2 27605 log2sumbnd 27606 zringfrac 33547 measdivcst 34188 measdivcstALTV 34189 mrexval 35469 mexval 35470 mdvval 35472 msubvrs 35528 mthmval 35543 weiunlem2 36429 f1omptsnlem 37302 upixp 37689 ismrer1 37798 frlmsnic 42495 fsuppind 42545 uzmptshftfval 44315 amgmwlem 48896 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |