MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt3i Structured version   Visualization version   GIF version

Theorem fvmpt3i 6940
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvmpt3.a (𝑥 = 𝐴𝐵 = 𝐶)
fvmpt3.b 𝐹 = (𝑥𝐷𝐵)
fvmpt3i.c 𝐵 ∈ V
Assertion
Ref Expression
fvmpt3i (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt3i
StepHypRef Expression
1 fvmpt3.a . 2 (𝑥 = 𝐴𝐵 = 𝐶)
2 fvmpt3.b . 2 𝐹 = (𝑥𝐷𝐵)
3 fvmpt3i.c . . 3 𝐵 ∈ V
43a1i 11 . 2 (𝑥𝐷𝐵 ∈ V)
51, 2, 4fvmpt3 6939 1 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3442  cmpt 5179  cfv 6483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-iota 6435  df-fun 6485  df-fv 6491
This theorem is referenced by:  isf32lem9  10222  axcc2lem  10297  caucvg  15489  ismre  17396  mrisval  17436  frmdup1  18599  frmdup2  18600  qusghm  18967  pmtrfval  19154  odf1  19265  vrgpfval  19467  dprdz  19727  dmdprdsplitlem  19734  dprd2dlem2  19737  dprd2dlem1  19738  dprd2da  19739  ablfac1a  19766  ablfac1b  19767  ablfac1eu  19770  ipdir  20949  ipass  20955  isphld  20964  istopon  22166  qustgpopn  23376  qustgplem  23377  tcphcph  24506  cmvth  25260  mvth  25261  dvle  25276  lhop1  25283  dvfsumlem3  25297  pige3ALT  25781  fsumdvdscom  26439  logfacbnd3  26476  dchrptlem1  26517  dchrptlem2  26518  lgsdchrval  26607  dchrisumlem3  26744  dchrisum0flblem1  26761  dchrisum0fno1  26764  dchrisum0lem1b  26768  dchrisum0lem2a  26770  dchrisum0lem2  26771  logsqvma2  26796  log2sumbnd  26797  measdivcst  32488  measdivcstALTV  32489  mrexval  33760  mexval  33761  mdvval  33763  msubvrs  33819  mthmval  33834  f1omptsnlem  35661  upixp  36043  ismrer1  36152  frlmsnic  40574  fsuppind  40590  uzmptshftfval  42337  amgmwlem  46924  amgmlemALT  46925
  Copyright terms: Public domain W3C validator