MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt3i Structured version   Visualization version   GIF version

Theorem fvmpt3i 6880
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvmpt3.a (𝑥 = 𝐴𝐵 = 𝐶)
fvmpt3.b 𝐹 = (𝑥𝐷𝐵)
fvmpt3i.c 𝐵 ∈ V
Assertion
Ref Expression
fvmpt3i (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt3i
StepHypRef Expression
1 fvmpt3.a . 2 (𝑥 = 𝐴𝐵 = 𝐶)
2 fvmpt3.b . 2 𝐹 = (𝑥𝐷𝐵)
3 fvmpt3i.c . . 3 𝐵 ∈ V
43a1i 11 . 2 (𝑥𝐷𝐵 ∈ V)
51, 2, 4fvmpt3 6879 1 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cmpt 5157  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  isf32lem9  10117  axcc2lem  10192  caucvg  15390  ismre  17299  mrisval  17339  frmdup1  18503  frmdup2  18504  qusghm  18871  pmtrfval  19058  odf1  19169  vrgpfval  19372  dprdz  19633  dmdprdsplitlem  19640  dprd2dlem2  19643  dprd2dlem1  19644  dprd2da  19645  ablfac1a  19672  ablfac1b  19673  ablfac1eu  19676  ipdir  20844  ipass  20850  isphld  20859  istopon  22061  qustgpopn  23271  qustgplem  23272  tcphcph  24401  cmvth  25155  mvth  25156  dvle  25171  lhop1  25178  dvfsumlem3  25192  pige3ALT  25676  fsumdvdscom  26334  logfacbnd3  26371  dchrptlem1  26412  dchrptlem2  26413  lgsdchrval  26502  dchrisumlem3  26639  dchrisum0flblem1  26656  dchrisum0fno1  26659  dchrisum0lem1b  26663  dchrisum0lem2a  26665  dchrisum0lem2  26666  logsqvma2  26691  log2sumbnd  26692  measdivcst  32192  measdivcstALTV  32193  mrexval  33463  mexval  33464  mdvval  33466  msubvrs  33522  mthmval  33537  f1omptsnlem  35507  upixp  35887  ismrer1  35996  frlmsnic  40263  fsuppind  40279  uzmptshftfval  41964  amgmwlem  46506  amgmlemALT  46507
  Copyright terms: Public domain W3C validator