| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| fvmpt3i.c | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
| 5 | 1, 2, 4 | fvmpt3 6972 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ↦ cmpt 5188 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: isf32lem9 10314 axcc2lem 10389 caucvg 15645 ismre 17551 mrisval 17591 frmdup1 18791 frmdup2 18792 qusghm 19187 pmtrfval 19380 odf1 19492 vrgpfval 19696 dprdz 19962 dmdprdsplitlem 19969 dprd2dlem2 19972 dprd2dlem1 19973 dprd2da 19974 ablfac1a 20001 ablfac1b 20002 ablfac1eu 20005 ipdir 21548 ipass 21554 isphld 21563 istopon 22799 qustgpopn 24007 qustgplem 24008 tcphcph 25137 cmvth 25895 cmvthOLD 25896 mvth 25897 dvle 25912 lhop1 25919 dvfsumlem3 25935 pige3ALT 26429 fsumdvdscom 27095 logfacbnd3 27134 dchrptlem1 27175 dchrptlem2 27176 lgsdchrval 27265 dchrisumlem3 27402 dchrisum0flblem1 27419 dchrisum0fno1 27422 dchrisum0lem1b 27426 dchrisum0lem2a 27428 dchrisum0lem2 27429 logsqvma2 27454 log2sumbnd 27455 zringfrac 33525 measdivcst 34214 measdivcstALTV 34215 mrexval 35488 mexval 35489 mdvval 35491 msubvrs 35547 mthmval 35562 weiunlem2 36451 f1omptsnlem 37324 upixp 37723 ismrer1 37832 frlmsnic 42528 fsuppind 42578 uzmptshftfval 44335 tposideq 48876 fucocolem2 49343 amgmwlem 49791 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |