![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmpt3i.c | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
5 | 1, 2, 4 | fvmpt3 6533 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 Vcvv 3414 ↦ cmpt 4952 ‘cfv 6123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-iota 6086 df-fun 6125 df-fv 6131 |
This theorem is referenced by: isf32lem9 9498 axcc2lem 9573 caucvg 14786 ismre 16603 mrisval 16643 frmdup1 17755 frmdup2 17756 qusghm 18048 pmtrfval 18220 odf1 18330 vrgpfval 18532 dprdz 18783 dmdprdsplitlem 18790 dprd2dlem2 18793 dprd2dlem1 18794 dprd2da 18795 ablfac1a 18822 ablfac1b 18823 ablfac1eu 18826 ipdir 20346 ipass 20352 isphld 20361 istopon 21087 qustgpopn 22293 qustgplem 22294 tcphcph 23405 cmvth 24153 mvth 24154 dvle 24169 lhop1 24176 dvfsumlem3 24190 pige3 24669 fsumdvdscom 25324 logfacbnd3 25361 dchrptlem1 25402 dchrptlem2 25403 lgsdchrval 25492 dchrisumlem3 25593 dchrisum0flblem1 25610 dchrisum0fno1 25613 dchrisum0lem1b 25617 dchrisum0lem2a 25619 dchrisum0lem2 25620 logsqvma2 25645 log2sumbnd 25646 measdivcstOLD 30832 measdivcst 30833 mrexval 31944 mexval 31945 mdvval 31947 msubvrs 32003 mthmval 32018 f1omptsnlem 33729 upixp 34067 ismrer1 34179 uzmptshftfval 39385 amgmwlem 43444 amgmlemALT 43445 |
Copyright terms: Public domain | W3C validator |