![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmpt3i.c | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
5 | 1, 2, 4 | fvmpt3 7002 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ↦ cmpt 5231 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: isf32lem9 10358 axcc2lem 10433 caucvg 15629 ismre 17538 mrisval 17578 frmdup1 18781 frmdup2 18782 qusghm 19169 pmtrfval 19359 odf1 19471 vrgpfval 19675 dprdz 19941 dmdprdsplitlem 19948 dprd2dlem2 19951 dprd2dlem1 19952 dprd2da 19953 ablfac1a 19980 ablfac1b 19981 ablfac1eu 19984 ipdir 21411 ipass 21417 isphld 21426 istopon 22634 qustgpopn 23844 qustgplem 23845 tcphcph 24978 cmvth 25732 mvth 25733 dvle 25748 lhop1 25755 dvfsumlem3 25769 pige3ALT 26253 fsumdvdscom 26913 logfacbnd3 26950 dchrptlem1 26991 dchrptlem2 26992 lgsdchrval 27081 dchrisumlem3 27218 dchrisum0flblem1 27235 dchrisum0fno1 27238 dchrisum0lem1b 27242 dchrisum0lem2a 27244 dchrisum0lem2 27245 logsqvma2 27270 log2sumbnd 27271 measdivcst 33508 measdivcstALTV 33509 mrexval 34778 mexval 34779 mdvval 34781 msubvrs 34837 mthmval 34852 gg-cmvth 35467 f1omptsnlem 36520 upixp 36900 ismrer1 37009 frlmsnic 41412 fsuppind 41464 uzmptshftfval 43407 amgmwlem 47937 amgmlemALT 47938 |
Copyright terms: Public domain | W3C validator |