| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| fvmpt3i.c | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
| 5 | 1, 2, 4 | fvmpt3 6934 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ↦ cmpt 5173 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 |
| This theorem is referenced by: isf32lem9 10255 axcc2lem 10330 caucvg 15586 ismre 17492 mrisval 17536 frmdup1 18738 frmdup2 18739 qusghm 19134 pmtrfval 19329 odf1 19441 vrgpfval 19645 dprdz 19911 dmdprdsplitlem 19918 dprd2dlem2 19921 dprd2dlem1 19922 dprd2da 19923 ablfac1a 19950 ablfac1b 19951 ablfac1eu 19954 ipdir 21546 ipass 21552 isphld 21561 istopon 22797 qustgpopn 24005 qustgplem 24006 tcphcph 25135 cmvth 25893 cmvthOLD 25894 mvth 25895 dvle 25910 lhop1 25917 dvfsumlem3 25933 pige3ALT 26427 fsumdvdscom 27093 logfacbnd3 27132 dchrptlem1 27173 dchrptlem2 27174 lgsdchrval 27263 dchrisumlem3 27400 dchrisum0flblem1 27417 dchrisum0fno1 27420 dchrisum0lem1b 27424 dchrisum0lem2a 27426 dchrisum0lem2 27427 logsqvma2 27452 log2sumbnd 27453 zringfrac 33491 measdivcst 34191 measdivcstALTV 34192 mrexval 35474 mexval 35475 mdvval 35477 msubvrs 35533 mthmval 35548 weiunlem2 36437 f1omptsnlem 37310 upixp 37709 ismrer1 37818 frlmsnic 42513 fsuppind 42563 uzmptshftfval 44319 tposideq 48872 fucocolem2 49339 amgmwlem 49787 amgmlemALT 49788 |
| Copyright terms: Public domain | W3C validator |