Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmpt3i.c | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
5 | 1, 2, 4 | fvmpt3 6879 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ↦ cmpt 5157 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: isf32lem9 10117 axcc2lem 10192 caucvg 15390 ismre 17299 mrisval 17339 frmdup1 18503 frmdup2 18504 qusghm 18871 pmtrfval 19058 odf1 19169 vrgpfval 19372 dprdz 19633 dmdprdsplitlem 19640 dprd2dlem2 19643 dprd2dlem1 19644 dprd2da 19645 ablfac1a 19672 ablfac1b 19673 ablfac1eu 19676 ipdir 20844 ipass 20850 isphld 20859 istopon 22061 qustgpopn 23271 qustgplem 23272 tcphcph 24401 cmvth 25155 mvth 25156 dvle 25171 lhop1 25178 dvfsumlem3 25192 pige3ALT 25676 fsumdvdscom 26334 logfacbnd3 26371 dchrptlem1 26412 dchrptlem2 26413 lgsdchrval 26502 dchrisumlem3 26639 dchrisum0flblem1 26656 dchrisum0fno1 26659 dchrisum0lem1b 26663 dchrisum0lem2a 26665 dchrisum0lem2 26666 logsqvma2 26691 log2sumbnd 26692 measdivcst 32192 measdivcstALTV 32193 mrexval 33463 mexval 33464 mdvval 33466 msubvrs 33522 mthmval 33537 f1omptsnlem 35507 upixp 35887 ismrer1 35996 frlmsnic 40263 fsuppind 40279 uzmptshftfval 41964 amgmwlem 46506 amgmlemALT 46507 |
Copyright terms: Public domain | W3C validator |