| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| fvmpt3i.c | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
| 5 | 1, 2, 4 | fvmpt3 6954 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ↦ cmpt 5183 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 |
| This theorem is referenced by: isf32lem9 10290 axcc2lem 10365 caucvg 15621 ismre 17527 mrisval 17567 frmdup1 18767 frmdup2 18768 qusghm 19163 pmtrfval 19356 odf1 19468 vrgpfval 19672 dprdz 19938 dmdprdsplitlem 19945 dprd2dlem2 19948 dprd2dlem1 19949 dprd2da 19950 ablfac1a 19977 ablfac1b 19978 ablfac1eu 19981 ipdir 21524 ipass 21530 isphld 21539 istopon 22775 qustgpopn 23983 qustgplem 23984 tcphcph 25113 cmvth 25871 cmvthOLD 25872 mvth 25873 dvle 25888 lhop1 25895 dvfsumlem3 25911 pige3ALT 26405 fsumdvdscom 27071 logfacbnd3 27110 dchrptlem1 27151 dchrptlem2 27152 lgsdchrval 27241 dchrisumlem3 27378 dchrisum0flblem1 27395 dchrisum0fno1 27398 dchrisum0lem1b 27402 dchrisum0lem2a 27404 dchrisum0lem2 27405 logsqvma2 27430 log2sumbnd 27431 zringfrac 33498 measdivcst 34187 measdivcstALTV 34188 mrexval 35461 mexval 35462 mdvval 35464 msubvrs 35520 mthmval 35535 weiunlem2 36424 f1omptsnlem 37297 upixp 37696 ismrer1 37805 frlmsnic 42501 fsuppind 42551 uzmptshftfval 44308 tposideq 48849 fucocolem2 49316 amgmwlem 49764 amgmlemALT 49765 |
| Copyright terms: Public domain | W3C validator |