Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1oresf1o2 Structured version   Visualization version   GIF version

Theorem f1oresf1o2 47320
Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.)
Hypotheses
Ref Expression
f1oresf1o2.1 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresf1o2.2 (𝜑𝐷𝐴)
f1oresf1o2.3 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷𝜒))
Assertion
Ref Expression
f1oresf1o2 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜒(𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem f1oresf1o2
StepHypRef Expression
1 f1oresf1o2.1 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
2 f1oresf1o2.2 . 2 (𝜑𝐷𝐴)
3 f1of 6818 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
41, 3syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
54adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐹:𝐴𝐵)
62sselda 3958 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝑥𝐴)
75, 6jca 511 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐹:𝐴𝐵𝑥𝐴))
873adant3 1132 . . . . . . 7 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → (𝐹:𝐴𝐵𝑥𝐴))
9 ffvelcdm 7071 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
108, 9syl 17 . . . . . 6 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ 𝐵)
11 eleq1 2822 . . . . . . 7 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐵𝑦𝐵))
12113ad2ant3 1135 . . . . . 6 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝑥) ∈ 𝐵𝑦𝐵))
1310, 12mpbid 232 . . . . 5 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐵)
14 eqcom 2742 . . . . . . . 8 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
15 f1oresf1o2.3 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷𝜒))
1615biimpd 229 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷𝜒))
1716ex 412 . . . . . . . 8 (𝜑 → (𝑦 = (𝐹𝑥) → (𝑥𝐷𝜒)))
1814, 17biimtrid 242 . . . . . . 7 (𝜑 → ((𝐹𝑥) = 𝑦 → (𝑥𝐷𝜒)))
1918com23 86 . . . . . 6 (𝜑 → (𝑥𝐷 → ((𝐹𝑥) = 𝑦𝜒)))
20193imp 1110 . . . . 5 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → 𝜒)
2113, 20jca 511 . . . 4 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → (𝑦𝐵𝜒))
2221rexlimdv3a 3145 . . 3 (𝜑 → (∃𝑥𝐷 (𝐹𝑥) = 𝑦 → (𝑦𝐵𝜒)))
23 f1ofo 6825 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
241, 23syl 17 . . . . . . 7 (𝜑𝐹:𝐴onto𝐵)
25 foelcdmi 6940 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
2624, 25sylan 580 . . . . . 6 ((𝜑𝑦𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
2726ex 412 . . . . 5 (𝜑 → (𝑦𝐵 → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
28 nfv 1914 . . . . . 6 𝑥𝜑
29 nfv 1914 . . . . . . 7 𝑥𝜒
30 nfre1 3267 . . . . . . 7 𝑥𝑥𝐷 (𝐹𝑥) = 𝑦
3129, 30nfim 1896 . . . . . 6 𝑥(𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)
32 rspe 3232 . . . . . . . . . . . . . 14 ((𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)
3332expcom 413 . . . . . . . . . . . . 13 ((𝐹𝑥) = 𝑦 → (𝑥𝐷 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3433eqcoms 2743 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (𝑥𝐷 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3534adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3615, 35sylbird 260 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑥)) → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3736ex 412 . . . . . . . . 9 (𝜑 → (𝑦 = (𝐹𝑥) → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
3837adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
3914, 38biimtrid 242 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
4039ex 412 . . . . . 6 (𝜑 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))))
4128, 31, 40rexlimd 3249 . . . . 5 (𝜑 → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
4227, 41syld 47 . . . 4 (𝜑 → (𝑦𝐵 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
4342impd 410 . . 3 (𝜑 → ((𝑦𝐵𝜒) → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
4422, 43impbid 212 . 2 (𝜑 → (∃𝑥𝐷 (𝐹𝑥) = 𝑦 ↔ (𝑦𝐵𝜒)))
451, 2, 44f1oresf1o 47319 1 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  wss 3926  cres 5656  wf 6527  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator