Proof of Theorem f1oresf1o2
| Step | Hyp | Ref
| Expression |
| 1 | | f1oresf1o2.1 |
. 2
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| 2 | | f1oresf1o2.2 |
. 2
⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| 3 | | f1of 6848 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 4 | 1, 3 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 5 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐹:𝐴⟶𝐵) |
| 6 | 2 | sselda 3983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐴) |
| 7 | 5, 6 | jca 511 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴)) |
| 8 | 7 | 3adant3 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → (𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴)) |
| 9 | | ffvelcdm 7101 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 10 | 8, 9 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → (𝐹‘𝑥) ∈ 𝐵) |
| 11 | | eleq1 2829 |
. . . . . . 7
⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 12 | 11 | 3ad2ant3 1136 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 13 | 10, 12 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
| 14 | | eqcom 2744 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) |
| 15 | | f1oresf1o2.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑥 ∈ 𝐷 ↔ 𝜒)) |
| 16 | 15 | biimpd 229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑥 ∈ 𝐷 → 𝜒)) |
| 17 | 16 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 = (𝐹‘𝑥) → (𝑥 ∈ 𝐷 → 𝜒))) |
| 18 | 14, 17 | biimtrid 242 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝑥) = 𝑦 → (𝑥 ∈ 𝐷 → 𝜒))) |
| 19 | 18 | com23 86 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐷 → ((𝐹‘𝑥) = 𝑦 → 𝜒))) |
| 20 | 19 | 3imp 1111 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → 𝜒) |
| 21 | 13, 20 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → (𝑦 ∈ 𝐵 ∧ 𝜒)) |
| 22 | 21 | rexlimdv3a 3159 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 → (𝑦 ∈ 𝐵 ∧ 𝜒))) |
| 23 | | f1ofo 6855 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| 24 | 1, 23 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) |
| 25 | | foelcdmi 6970 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
| 26 | 24, 25 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
| 27 | 26 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
| 28 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
| 29 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑥𝜒 |
| 30 | | nfre1 3285 |
. . . . . . 7
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 |
| 31 | 29, 30 | nfim 1896 |
. . . . . 6
⊢
Ⅎ𝑥(𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦) |
| 32 | | rspe 3249 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦) |
| 33 | 32 | expcom 413 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) = 𝑦 → (𝑥 ∈ 𝐷 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)) |
| 34 | 33 | eqcoms 2745 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘𝑥) → (𝑥 ∈ 𝐷 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑥 ∈ 𝐷 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)) |
| 36 | 15, 35 | sylbird 260 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)) |
| 37 | 36 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 = (𝐹‘𝑥) → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦))) |
| 38 | 37 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦))) |
| 39 | 14, 38 | biimtrid 242 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦))) |
| 40 | 39 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)))) |
| 41 | 28, 31, 40 | rexlimd 3266 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦))) |
| 42 | 27, 41 | syld 47 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐵 → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦))) |
| 43 | 42 | impd 410 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ 𝜒) → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)) |
| 44 | 22, 43 | impbid 212 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) |
| 45 | 1, 2, 44 | f1oresf1o 47302 |
1
⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |