Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1oresf1o2 Structured version   Visualization version   GIF version

Theorem f1oresf1o2 47206
Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.)
Hypotheses
Ref Expression
f1oresf1o2.1 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresf1o2.2 (𝜑𝐷𝐴)
f1oresf1o2.3 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷𝜒))
Assertion
Ref Expression
f1oresf1o2 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜒(𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem f1oresf1o2
StepHypRef Expression
1 f1oresf1o2.1 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
2 f1oresf1o2.2 . 2 (𝜑𝐷𝐴)
3 f1of 6862 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
41, 3syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
54adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐹:𝐴𝐵)
62sselda 4008 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝑥𝐴)
75, 6jca 511 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐹:𝐴𝐵𝑥𝐴))
873adant3 1132 . . . . . . 7 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → (𝐹:𝐴𝐵𝑥𝐴))
9 ffvelcdm 7115 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
108, 9syl 17 . . . . . 6 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ 𝐵)
11 eleq1 2832 . . . . . . 7 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐵𝑦𝐵))
12113ad2ant3 1135 . . . . . 6 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝑥) ∈ 𝐵𝑦𝐵))
1310, 12mpbid 232 . . . . 5 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐵)
14 eqcom 2747 . . . . . . . 8 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
15 f1oresf1o2.3 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷𝜒))
1615biimpd 229 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷𝜒))
1716ex 412 . . . . . . . 8 (𝜑 → (𝑦 = (𝐹𝑥) → (𝑥𝐷𝜒)))
1814, 17biimtrid 242 . . . . . . 7 (𝜑 → ((𝐹𝑥) = 𝑦 → (𝑥𝐷𝜒)))
1918com23 86 . . . . . 6 (𝜑 → (𝑥𝐷 → ((𝐹𝑥) = 𝑦𝜒)))
20193imp 1111 . . . . 5 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → 𝜒)
2113, 20jca 511 . . . 4 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → (𝑦𝐵𝜒))
2221rexlimdv3a 3165 . . 3 (𝜑 → (∃𝑥𝐷 (𝐹𝑥) = 𝑦 → (𝑦𝐵𝜒)))
23 f1ofo 6869 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
241, 23syl 17 . . . . . . 7 (𝜑𝐹:𝐴onto𝐵)
25 foelcdmi 6983 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
2624, 25sylan 579 . . . . . 6 ((𝜑𝑦𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
2726ex 412 . . . . 5 (𝜑 → (𝑦𝐵 → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
28 nfv 1913 . . . . . 6 𝑥𝜑
29 nfv 1913 . . . . . . 7 𝑥𝜒
30 nfre1 3291 . . . . . . 7 𝑥𝑥𝐷 (𝐹𝑥) = 𝑦
3129, 30nfim 1895 . . . . . 6 𝑥(𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)
32 rspe 3255 . . . . . . . . . . . . . 14 ((𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)
3332expcom 413 . . . . . . . . . . . . 13 ((𝐹𝑥) = 𝑦 → (𝑥𝐷 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3433eqcoms 2748 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (𝑥𝐷 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3534adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3615, 35sylbird 260 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑥)) → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3736ex 412 . . . . . . . . 9 (𝜑 → (𝑦 = (𝐹𝑥) → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
3837adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
3914, 38biimtrid 242 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
4039ex 412 . . . . . 6 (𝜑 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))))
4128, 31, 40rexlimd 3272 . . . . 5 (𝜑 → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
4227, 41syld 47 . . . 4 (𝜑 → (𝑦𝐵 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
4342impd 410 . . 3 (𝜑 → ((𝑦𝐵𝜒) → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
4422, 43impbid 212 . 2 (𝜑 → (∃𝑥𝐷 (𝐹𝑥) = 𝑦 ↔ (𝑦𝐵𝜒)))
451, 2, 44f1oresf1o 47205 1 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  wss 3976  cres 5702  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator