Proof of Theorem f1oresf1o2
Step | Hyp | Ref
| Expression |
1 | | f1oresf1o2.1 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
2 | | f1of1 6355 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
4 | | f1oresf1o2.2 |
. . 3
⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
5 | | f1ores 6370 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷)) |
6 | 3, 4, 5 | syl2anc 580 |
. 2
⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷)) |
7 | | f1ofun 6358 |
. . . . . 6
⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
8 | 1, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → Fun 𝐹) |
9 | | f1odm 6360 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
10 | 1, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom 𝐹 = 𝐴) |
11 | 4, 10 | sseqtr4d 3838 |
. . . . 5
⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
12 | | dfimafn 6470 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐷 ⊆ dom 𝐹) → (𝐹 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦}) |
13 | 8, 11, 12 | syl2anc 580 |
. . . 4
⊢ (𝜑 → (𝐹 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦}) |
14 | | f1of 6356 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
15 | 1, 14 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
16 | 15 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐹:𝐴⟶𝐵) |
17 | 4 | sselda 3798 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐴) |
18 | 16, 17 | jca 508 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴)) |
19 | 18 | 3adant3 1163 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → (𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴)) |
20 | | ffvelrn 6583 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
21 | 19, 20 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → (𝐹‘𝑥) ∈ 𝐵) |
22 | | eleq1 2866 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
23 | 22 | 3ad2ant3 1166 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
24 | 21, 23 | mpbid 224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
25 | | eqcom 2806 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) |
26 | | f1oresf1o2.3 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑥 ∈ 𝐷 ↔ 𝜒)) |
27 | 26 | biimpd 221 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑥 ∈ 𝐷 → 𝜒)) |
28 | 27 | ex 402 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 = (𝐹‘𝑥) → (𝑥 ∈ 𝐷 → 𝜒))) |
29 | 25, 28 | syl5bi 234 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹‘𝑥) = 𝑦 → (𝑥 ∈ 𝐷 → 𝜒))) |
30 | 29 | com23 86 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐷 → ((𝐹‘𝑥) = 𝑦 → 𝜒))) |
31 | 30 | 3imp 1138 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → 𝜒) |
32 | 24, 31 | jca 508 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → (𝑦 ∈ 𝐵 ∧ 𝜒)) |
33 | 32 | rexlimdv3a 3214 |
. . . . . . 7
⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 → (𝑦 ∈ 𝐵 ∧ 𝜒))) |
34 | | f1ofo 6363 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
35 | 1, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) |
36 | | foelrni 6469 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
37 | 35, 36 | sylan 576 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
38 | 37 | ex 402 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
39 | | nfv 2010 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜑 |
40 | | nfv 2010 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝜒 |
41 | | nfre1 3185 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 |
42 | 40, 41 | nfim 1996 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦) |
43 | | rspe 3183 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) = 𝑦) → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦) |
44 | 43 | expcom 403 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑥) = 𝑦 → (𝑥 ∈ 𝐷 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)) |
45 | 44 | eqcoms 2807 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐹‘𝑥) → (𝑥 ∈ 𝐷 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)) |
46 | 45 | adantl 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑥 ∈ 𝐷 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)) |
47 | 26, 46 | sylbird 252 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)) |
48 | 47 | ex 402 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 = (𝐹‘𝑥) → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦))) |
49 | 48 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦))) |
50 | 25, 49 | syl5bi 234 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦))) |
51 | 50 | ex 402 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)))) |
52 | 39, 42, 51 | rexlimd 3207 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦))) |
53 | 38, 52 | syld 47 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐵 → (𝜒 → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦))) |
54 | 53 | impd 399 |
. . . . . . 7
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ 𝜒) → ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦)) |
55 | 33, 54 | impbid 204 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) |
56 | 55 | abbidv 2918 |
. . . . 5
⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜒)}) |
57 | | df-rab 3098 |
. . . . 5
⊢ {𝑦 ∈ 𝐵 ∣ 𝜒} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜒)} |
58 | 56, 57 | syl6eqr 2851 |
. . . 4
⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦} = {𝑦 ∈ 𝐵 ∣ 𝜒}) |
59 | 13, 58 | eqtr2d 2834 |
. . 3
⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} = (𝐹 “ 𝐷)) |
60 | 59 | f1oeq3d 6353 |
. 2
⊢ (𝜑 → ((𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷))) |
61 | 6, 60 | mpbird 249 |
1
⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |