Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ruclem4 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15933. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
Ref | Expression |
---|---|
ruclem4 | ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.5 | . . 3 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
2 | 1 | fveq1i 6769 | . 2 ⊢ (𝐺‘0) = (seq0(𝐷, 𝐶)‘0) |
3 | 0z 12313 | . . 3 ⊢ 0 ∈ ℤ | |
4 | ruc.4 | . . . . . 6 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
5 | ruc.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
6 | ffn 6596 | . . . . . . . . 9 ⊢ (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ) | |
7 | fnresdm 6547 | . . . . . . . . 9 ⊢ (𝐹 Fn ℕ → (𝐹 ↾ ℕ) = 𝐹) | |
8 | 5, 6, 7 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ ℕ) = 𝐹) |
9 | dfn2 12229 | . . . . . . . . 9 ⊢ ℕ = (ℕ0 ∖ {0}) | |
10 | 9 | reseq2i 5885 | . . . . . . . 8 ⊢ (𝐹 ↾ ℕ) = (𝐹 ↾ (ℕ0 ∖ {0})) |
11 | 8, 10 | eqtr3di 2794 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝐹 ↾ (ℕ0 ∖ {0}))) |
12 | 11 | uneq2d 4101 | . . . . . 6 ⊢ (𝜑 → ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
13 | 4, 12 | eqtrid 2791 | . . . . 5 ⊢ (𝜑 → 𝐶 = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
14 | 13 | fveq1d 6770 | . . . 4 ⊢ (𝜑 → (𝐶‘0) = (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0)) |
15 | c0ex 10953 | . . . . . . 7 ⊢ 0 ∈ V | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0 ∈ V) |
17 | opex 5381 | . . . . . . 7 ⊢ 〈0, 1〉 ∈ V | |
18 | 17 | a1i 11 | . . . . . 6 ⊢ (⊤ → 〈0, 1〉 ∈ V) |
19 | eqid 2739 | . . . . . 6 ⊢ ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) | |
20 | 16, 18, 19 | fvsnun1 7048 | . . . . 5 ⊢ (⊤ → (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = 〈0, 1〉) |
21 | 20 | mptru 1548 | . . . 4 ⊢ (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = 〈0, 1〉 |
22 | 14, 21 | eqtrdi 2795 | . . 3 ⊢ (𝜑 → (𝐶‘0) = 〈0, 1〉) |
23 | 3, 22 | seq1i 13716 | . 2 ⊢ (𝜑 → (seq0(𝐷, 𝐶)‘0) = 〈0, 1〉) |
24 | 2, 23 | eqtrid 2791 | 1 ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⊤wtru 1542 ∈ wcel 2109 Vcvv 3430 ⦋csb 3836 ∖ cdif 3888 ∪ cun 3889 ifcif 4464 {csn 4566 〈cop 4572 class class class wbr 5078 × cxp 5586 ↾ cres 5590 Fn wfn 6425 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 1st c1st 7815 2nd c2nd 7816 ℝcr 10854 0cc0 10855 1c1 10856 + caddc 10858 < clt 10993 / cdiv 11615 ℕcn 11956 2c2 12011 ℕ0cn0 12216 seqcseq 13702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-seq 13703 |
This theorem is referenced by: ruclem6 15925 ruclem8 15927 ruclem11 15930 |
Copyright terms: Public domain | W3C validator |