MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem4 Structured version   Visualization version   GIF version

Theorem ruclem4 16178
Description: Lemma for ruc 16187. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem4 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem4
StepHypRef Expression
1 ruc.5 . . 3 𝐺 = seq0(𝐷, 𝐶)
21fveq1i 6841 . 2 (𝐺‘0) = (seq0(𝐷, 𝐶)‘0)
3 0z 12516 . . 3 0 ∈ ℤ
4 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
5 ruc.1 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
6 ffn 6670 . . . . . . . . 9 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
7 fnresdm 6619 . . . . . . . . 9 (𝐹 Fn ℕ → (𝐹 ↾ ℕ) = 𝐹)
85, 6, 73syl 18 . . . . . . . 8 (𝜑 → (𝐹 ↾ ℕ) = 𝐹)
9 dfn2 12431 . . . . . . . . 9 ℕ = (ℕ0 ∖ {0})
109reseq2i 5936 . . . . . . . 8 (𝐹 ↾ ℕ) = (𝐹 ↾ (ℕ0 ∖ {0}))
118, 10eqtr3di 2779 . . . . . . 7 (𝜑𝐹 = (𝐹 ↾ (ℕ0 ∖ {0})))
1211uneq2d 4127 . . . . . 6 (𝜑 → ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹) = ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))))
134, 12eqtrid 2776 . . . . 5 (𝜑𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))))
1413fveq1d 6842 . . . 4 (𝜑 → (𝐶‘0) = (({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0))
15 c0ex 11144 . . . . . . 7 0 ∈ V
1615a1i 11 . . . . . 6 (⊤ → 0 ∈ V)
17 opex 5419 . . . . . . 7 ⟨0, 1⟩ ∈ V
1817a1i 11 . . . . . 6 (⊤ → ⟨0, 1⟩ ∈ V)
19 eqid 2729 . . . . . 6 ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) = ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))
2016, 18, 19fvsnun1 7138 . . . . 5 (⊤ → (({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = ⟨0, 1⟩)
2120mptru 1547 . . . 4 (({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = ⟨0, 1⟩
2214, 21eqtrdi 2780 . . 3 (𝜑 → (𝐶‘0) = ⟨0, 1⟩)
233, 22seq1i 13956 . 2 (𝜑 → (seq0(𝐷, 𝐶)‘0) = ⟨0, 1⟩)
242, 23eqtrid 2776 1 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3444  csb 3859  cdif 3908  cun 3909  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102   × cxp 5629  cres 5633   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  seqcseq 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943
This theorem is referenced by:  ruclem6  16179  ruclem8  16181  ruclem11  16184
  Copyright terms: Public domain W3C validator