Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ruclem4 | Structured version Visualization version GIF version |
Description: Lemma for ruc 16001. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
Ref | Expression |
---|---|
ruclem4 | ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.5 | . . 3 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
2 | 1 | fveq1i 6805 | . 2 ⊢ (𝐺‘0) = (seq0(𝐷, 𝐶)‘0) |
3 | 0z 12380 | . . 3 ⊢ 0 ∈ ℤ | |
4 | ruc.4 | . . . . . 6 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
5 | ruc.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
6 | ffn 6630 | . . . . . . . . 9 ⊢ (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ) | |
7 | fnresdm 6582 | . . . . . . . . 9 ⊢ (𝐹 Fn ℕ → (𝐹 ↾ ℕ) = 𝐹) | |
8 | 5, 6, 7 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ ℕ) = 𝐹) |
9 | dfn2 12296 | . . . . . . . . 9 ⊢ ℕ = (ℕ0 ∖ {0}) | |
10 | 9 | reseq2i 5900 | . . . . . . . 8 ⊢ (𝐹 ↾ ℕ) = (𝐹 ↾ (ℕ0 ∖ {0})) |
11 | 8, 10 | eqtr3di 2791 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝐹 ↾ (ℕ0 ∖ {0}))) |
12 | 11 | uneq2d 4103 | . . . . . 6 ⊢ (𝜑 → ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
13 | 4, 12 | eqtrid 2788 | . . . . 5 ⊢ (𝜑 → 𝐶 = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
14 | 13 | fveq1d 6806 | . . . 4 ⊢ (𝜑 → (𝐶‘0) = (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0)) |
15 | c0ex 11019 | . . . . . . 7 ⊢ 0 ∈ V | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0 ∈ V) |
17 | opex 5392 | . . . . . . 7 ⊢ 〈0, 1〉 ∈ V | |
18 | 17 | a1i 11 | . . . . . 6 ⊢ (⊤ → 〈0, 1〉 ∈ V) |
19 | eqid 2736 | . . . . . 6 ⊢ ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) | |
20 | 16, 18, 19 | fvsnun1 7086 | . . . . 5 ⊢ (⊤ → (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = 〈0, 1〉) |
21 | 20 | mptru 1546 | . . . 4 ⊢ (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = 〈0, 1〉 |
22 | 14, 21 | eqtrdi 2792 | . . 3 ⊢ (𝜑 → (𝐶‘0) = 〈0, 1〉) |
23 | 3, 22 | seq1i 13785 | . 2 ⊢ (𝜑 → (seq0(𝐷, 𝐶)‘0) = 〈0, 1〉) |
24 | 2, 23 | eqtrid 2788 | 1 ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 Vcvv 3437 ⦋csb 3837 ∖ cdif 3889 ∪ cun 3890 ifcif 4465 {csn 4565 〈cop 4571 class class class wbr 5081 × cxp 5598 ↾ cres 5602 Fn wfn 6453 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 1st c1st 7861 2nd c2nd 7862 ℝcr 10920 0cc0 10921 1c1 10922 + caddc 10924 < clt 11059 / cdiv 11682 ℕcn 12023 2c2 12078 ℕ0cn0 12283 seqcseq 13771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-seq 13772 |
This theorem is referenced by: ruclem6 15993 ruclem8 15995 ruclem11 15998 |
Copyright terms: Public domain | W3C validator |