![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruclem4 | Structured version Visualization version GIF version |
Description: Lemma for ruc 16193. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | β’ (π β πΉ:ββΆβ) |
ruc.2 | β’ (π β π· = (π₯ β (β Γ β), π¦ β β β¦ β¦(((1st βπ₯) + (2nd βπ₯)) / 2) / πβ¦if(π < π¦, β¨(1st βπ₯), πβ©, β¨((π + (2nd βπ₯)) / 2), (2nd βπ₯)β©))) |
ruc.4 | β’ πΆ = ({β¨0, β¨0, 1β©β©} βͺ πΉ) |
ruc.5 | β’ πΊ = seq0(π·, πΆ) |
Ref | Expression |
---|---|
ruclem4 | β’ (π β (πΊβ0) = β¨0, 1β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.5 | . . 3 β’ πΊ = seq0(π·, πΆ) | |
2 | 1 | fveq1i 6892 | . 2 β’ (πΊβ0) = (seq0(π·, πΆ)β0) |
3 | 0z 12576 | . . 3 β’ 0 β β€ | |
4 | ruc.4 | . . . . . 6 β’ πΆ = ({β¨0, β¨0, 1β©β©} βͺ πΉ) | |
5 | ruc.1 | . . . . . . . . 9 β’ (π β πΉ:ββΆβ) | |
6 | ffn 6717 | . . . . . . . . 9 β’ (πΉ:ββΆβ β πΉ Fn β) | |
7 | fnresdm 6669 | . . . . . . . . 9 β’ (πΉ Fn β β (πΉ βΎ β) = πΉ) | |
8 | 5, 6, 7 | 3syl 18 | . . . . . . . 8 β’ (π β (πΉ βΎ β) = πΉ) |
9 | dfn2 12492 | . . . . . . . . 9 β’ β = (β0 β {0}) | |
10 | 9 | reseq2i 5978 | . . . . . . . 8 β’ (πΉ βΎ β) = (πΉ βΎ (β0 β {0})) |
11 | 8, 10 | eqtr3di 2786 | . . . . . . 7 β’ (π β πΉ = (πΉ βΎ (β0 β {0}))) |
12 | 11 | uneq2d 4163 | . . . . . 6 β’ (π β ({β¨0, β¨0, 1β©β©} βͺ πΉ) = ({β¨0, β¨0, 1β©β©} βͺ (πΉ βΎ (β0 β {0})))) |
13 | 4, 12 | eqtrid 2783 | . . . . 5 β’ (π β πΆ = ({β¨0, β¨0, 1β©β©} βͺ (πΉ βΎ (β0 β {0})))) |
14 | 13 | fveq1d 6893 | . . . 4 β’ (π β (πΆβ0) = (({β¨0, β¨0, 1β©β©} βͺ (πΉ βΎ (β0 β {0})))β0)) |
15 | c0ex 11215 | . . . . . . 7 β’ 0 β V | |
16 | 15 | a1i 11 | . . . . . 6 β’ (β€ β 0 β V) |
17 | opex 5464 | . . . . . . 7 β’ β¨0, 1β© β V | |
18 | 17 | a1i 11 | . . . . . 6 β’ (β€ β β¨0, 1β© β V) |
19 | eqid 2731 | . . . . . 6 β’ ({β¨0, β¨0, 1β©β©} βͺ (πΉ βΎ (β0 β {0}))) = ({β¨0, β¨0, 1β©β©} βͺ (πΉ βΎ (β0 β {0}))) | |
20 | 16, 18, 19 | fvsnun1 7182 | . . . . 5 β’ (β€ β (({β¨0, β¨0, 1β©β©} βͺ (πΉ βΎ (β0 β {0})))β0) = β¨0, 1β©) |
21 | 20 | mptru 1547 | . . . 4 β’ (({β¨0, β¨0, 1β©β©} βͺ (πΉ βΎ (β0 β {0})))β0) = β¨0, 1β© |
22 | 14, 21 | eqtrdi 2787 | . . 3 β’ (π β (πΆβ0) = β¨0, 1β©) |
23 | 3, 22 | seq1i 13987 | . 2 β’ (π β (seq0(π·, πΆ)β0) = β¨0, 1β©) |
24 | 2, 23 | eqtrid 2783 | 1 β’ (π β (πΊβ0) = β¨0, 1β©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β€wtru 1541 β wcel 2105 Vcvv 3473 β¦csb 3893 β cdif 3945 βͺ cun 3946 ifcif 4528 {csn 4628 β¨cop 4634 class class class wbr 5148 Γ cxp 5674 βΎ cres 5678 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7412 β cmpo 7414 1st c1st 7977 2nd c2nd 7978 βcr 11115 0cc0 11116 1c1 11117 + caddc 11119 < clt 11255 / cdiv 11878 βcn 12219 2c2 12274 β0cn0 12479 seqcseq 13973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-seq 13974 |
This theorem is referenced by: ruclem6 16185 ruclem8 16187 ruclem11 16190 |
Copyright terms: Public domain | W3C validator |