| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruclem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for ruc 16218. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
| ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
| ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
| Ref | Expression |
|---|---|
| ruclem4 | ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.5 | . . 3 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
| 2 | 1 | fveq1i 6862 | . 2 ⊢ (𝐺‘0) = (seq0(𝐷, 𝐶)‘0) |
| 3 | 0z 12547 | . . 3 ⊢ 0 ∈ ℤ | |
| 4 | ruc.4 | . . . . . 6 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
| 5 | ruc.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
| 6 | ffn 6691 | . . . . . . . . 9 ⊢ (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ) | |
| 7 | fnresdm 6640 | . . . . . . . . 9 ⊢ (𝐹 Fn ℕ → (𝐹 ↾ ℕ) = 𝐹) | |
| 8 | 5, 6, 7 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ ℕ) = 𝐹) |
| 9 | dfn2 12462 | . . . . . . . . 9 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 10 | 9 | reseq2i 5950 | . . . . . . . 8 ⊢ (𝐹 ↾ ℕ) = (𝐹 ↾ (ℕ0 ∖ {0})) |
| 11 | 8, 10 | eqtr3di 2780 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝐹 ↾ (ℕ0 ∖ {0}))) |
| 12 | 11 | uneq2d 4134 | . . . . . 6 ⊢ (𝜑 → ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
| 13 | 4, 12 | eqtrid 2777 | . . . . 5 ⊢ (𝜑 → 𝐶 = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
| 14 | 13 | fveq1d 6863 | . . . 4 ⊢ (𝜑 → (𝐶‘0) = (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0)) |
| 15 | c0ex 11175 | . . . . . . 7 ⊢ 0 ∈ V | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0 ∈ V) |
| 17 | opex 5427 | . . . . . . 7 ⊢ 〈0, 1〉 ∈ V | |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ (⊤ → 〈0, 1〉 ∈ V) |
| 19 | eqid 2730 | . . . . . 6 ⊢ ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) | |
| 20 | 16, 18, 19 | fvsnun1 7159 | . . . . 5 ⊢ (⊤ → (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = 〈0, 1〉) |
| 21 | 20 | mptru 1547 | . . . 4 ⊢ (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = 〈0, 1〉 |
| 22 | 14, 21 | eqtrdi 2781 | . . 3 ⊢ (𝜑 → (𝐶‘0) = 〈0, 1〉) |
| 23 | 3, 22 | seq1i 13987 | . 2 ⊢ (𝜑 → (seq0(𝐷, 𝐶)‘0) = 〈0, 1〉) |
| 24 | 2, 23 | eqtrid 2777 | 1 ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3450 ⦋csb 3865 ∖ cdif 3914 ∪ cun 3915 ifcif 4491 {csn 4592 〈cop 4598 class class class wbr 5110 × cxp 5639 ↾ cres 5643 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 1st c1st 7969 2nd c2nd 7970 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 / cdiv 11842 ℕcn 12193 2c2 12248 ℕ0cn0 12449 seqcseq 13973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 |
| This theorem is referenced by: ruclem6 16210 ruclem8 16212 ruclem11 16215 |
| Copyright terms: Public domain | W3C validator |