| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruclem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for ruc 16152. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
| ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
| ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
| Ref | Expression |
|---|---|
| ruclem4 | ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.5 | . . 3 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (𝐺‘0) = (seq0(𝐷, 𝐶)‘0) |
| 3 | 0z 12479 | . . 3 ⊢ 0 ∈ ℤ | |
| 4 | ruc.4 | . . . . . 6 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
| 5 | ruc.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
| 6 | ffn 6651 | . . . . . . . . 9 ⊢ (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ) | |
| 7 | fnresdm 6600 | . . . . . . . . 9 ⊢ (𝐹 Fn ℕ → (𝐹 ↾ ℕ) = 𝐹) | |
| 8 | 5, 6, 7 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ ℕ) = 𝐹) |
| 9 | dfn2 12394 | . . . . . . . . 9 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 10 | 9 | reseq2i 5924 | . . . . . . . 8 ⊢ (𝐹 ↾ ℕ) = (𝐹 ↾ (ℕ0 ∖ {0})) |
| 11 | 8, 10 | eqtr3di 2781 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝐹 ↾ (ℕ0 ∖ {0}))) |
| 12 | 11 | uneq2d 4115 | . . . . . 6 ⊢ (𝜑 → ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
| 13 | 4, 12 | eqtrid 2778 | . . . . 5 ⊢ (𝜑 → 𝐶 = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
| 14 | 13 | fveq1d 6824 | . . . 4 ⊢ (𝜑 → (𝐶‘0) = (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0)) |
| 15 | c0ex 11106 | . . . . . . 7 ⊢ 0 ∈ V | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0 ∈ V) |
| 17 | opex 5402 | . . . . . . 7 ⊢ 〈0, 1〉 ∈ V | |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ (⊤ → 〈0, 1〉 ∈ V) |
| 19 | eqid 2731 | . . . . . 6 ⊢ ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) | |
| 20 | 16, 18, 19 | fvsnun1 7116 | . . . . 5 ⊢ (⊤ → (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = 〈0, 1〉) |
| 21 | 20 | mptru 1548 | . . . 4 ⊢ (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = 〈0, 1〉 |
| 22 | 14, 21 | eqtrdi 2782 | . . 3 ⊢ (𝜑 → (𝐶‘0) = 〈0, 1〉) |
| 23 | 3, 22 | seq1i 13922 | . 2 ⊢ (𝜑 → (seq0(𝐷, 𝐶)‘0) = 〈0, 1〉) |
| 24 | 2, 23 | eqtrid 2778 | 1 ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 Vcvv 3436 ⦋csb 3845 ∖ cdif 3894 ∪ cun 3895 ifcif 4472 {csn 4573 〈cop 4579 class class class wbr 5089 × cxp 5612 ↾ cres 5616 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 / cdiv 11774 ℕcn 12125 2c2 12180 ℕ0cn0 12381 seqcseq 13908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 |
| This theorem is referenced by: ruclem6 16144 ruclem8 16146 ruclem11 16149 |
| Copyright terms: Public domain | W3C validator |