MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem4 Structured version   Visualization version   GIF version

Theorem ruclem4 16202
Description: Lemma for ruc 16211. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem4 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem4
StepHypRef Expression
1 ruc.5 . . 3 𝐺 = seq0(𝐷, 𝐶)
21fveq1i 6859 . 2 (𝐺‘0) = (seq0(𝐷, 𝐶)‘0)
3 0z 12540 . . 3 0 ∈ ℤ
4 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
5 ruc.1 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
6 ffn 6688 . . . . . . . . 9 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
7 fnresdm 6637 . . . . . . . . 9 (𝐹 Fn ℕ → (𝐹 ↾ ℕ) = 𝐹)
85, 6, 73syl 18 . . . . . . . 8 (𝜑 → (𝐹 ↾ ℕ) = 𝐹)
9 dfn2 12455 . . . . . . . . 9 ℕ = (ℕ0 ∖ {0})
109reseq2i 5947 . . . . . . . 8 (𝐹 ↾ ℕ) = (𝐹 ↾ (ℕ0 ∖ {0}))
118, 10eqtr3di 2779 . . . . . . 7 (𝜑𝐹 = (𝐹 ↾ (ℕ0 ∖ {0})))
1211uneq2d 4131 . . . . . 6 (𝜑 → ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹) = ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))))
134, 12eqtrid 2776 . . . . 5 (𝜑𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))))
1413fveq1d 6860 . . . 4 (𝜑 → (𝐶‘0) = (({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0))
15 c0ex 11168 . . . . . . 7 0 ∈ V
1615a1i 11 . . . . . 6 (⊤ → 0 ∈ V)
17 opex 5424 . . . . . . 7 ⟨0, 1⟩ ∈ V
1817a1i 11 . . . . . 6 (⊤ → ⟨0, 1⟩ ∈ V)
19 eqid 2729 . . . . . 6 ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) = ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))
2016, 18, 19fvsnun1 7156 . . . . 5 (⊤ → (({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = ⟨0, 1⟩)
2120mptru 1547 . . . 4 (({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = ⟨0, 1⟩
2214, 21eqtrdi 2780 . . 3 (𝜑 → (𝐶‘0) = ⟨0, 1⟩)
233, 22seq1i 13980 . 2 (𝜑 → (seq0(𝐷, 𝐶)‘0) = ⟨0, 1⟩)
242, 23eqtrid 2776 1 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3447  csb 3862  cdif 3911  cun 3912  ifcif 4488  {csn 4589  cop 4595   class class class wbr 5107   × cxp 5636  cres 5640   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  seqcseq 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967
This theorem is referenced by:  ruclem6  16203  ruclem8  16205  ruclem11  16208
  Copyright terms: Public domain W3C validator