MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem4 Structured version   Visualization version   GIF version

Theorem ruclem4 15582
Description: Lemma for ruc 15591. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem4 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem4
StepHypRef Expression
1 ruc.5 . . 3 𝐺 = seq0(𝐷, 𝐶)
21fveq1i 6650 . 2 (𝐺‘0) = (seq0(𝐷, 𝐶)‘0)
3 0z 11984 . . 3 0 ∈ ℤ
4 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
5 dfn2 11902 . . . . . . . . 9 ℕ = (ℕ0 ∖ {0})
65reseq2i 5819 . . . . . . . 8 (𝐹 ↾ ℕ) = (𝐹 ↾ (ℕ0 ∖ {0}))
7 ruc.1 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
8 ffn 6491 . . . . . . . . 9 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
9 fnresdm 6442 . . . . . . . . 9 (𝐹 Fn ℕ → (𝐹 ↾ ℕ) = 𝐹)
107, 8, 93syl 18 . . . . . . . 8 (𝜑 → (𝐹 ↾ ℕ) = 𝐹)
116, 10syl5reqr 2851 . . . . . . 7 (𝜑𝐹 = (𝐹 ↾ (ℕ0 ∖ {0})))
1211uneq2d 4093 . . . . . 6 (𝜑 → ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹) = ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))))
134, 12syl5eq 2848 . . . . 5 (𝜑𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))))
1413fveq1d 6651 . . . 4 (𝜑 → (𝐶‘0) = (({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0))
15 c0ex 10628 . . . . . . 7 0 ∈ V
1615a1i 11 . . . . . 6 (⊤ → 0 ∈ V)
17 opex 5324 . . . . . . 7 ⟨0, 1⟩ ∈ V
1817a1i 11 . . . . . 6 (⊤ → ⟨0, 1⟩ ∈ V)
19 eqid 2801 . . . . . 6 ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) = ({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))
2016, 18, 19fvsnun1 6925 . . . . 5 (⊤ → (({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = ⟨0, 1⟩)
2120mptru 1545 . . . 4 (({⟨0, ⟨0, 1⟩⟩} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = ⟨0, 1⟩
2214, 21eqtrdi 2852 . . 3 (𝜑 → (𝐶‘0) = ⟨0, 1⟩)
233, 22seq1i 13382 . 2 (𝜑 → (seq0(𝐷, 𝐶)‘0) = ⟨0, 1⟩)
242, 23syl5eq 2848 1 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wtru 1539  wcel 2112  Vcvv 3444  csb 3831  cdif 3881  cun 3882  ifcif 4428  {csn 4528  cop 4534   class class class wbr 5033   × cxp 5521  cres 5525   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7139  cmpo 7141  1st c1st 7673  2nd c2nd 7674  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668   / cdiv 11290  cn 11629  2c2 11684  0cn0 11889  seqcseq 13368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-seq 13369
This theorem is referenced by:  ruclem6  15583  ruclem8  15585  ruclem11  15588
  Copyright terms: Public domain W3C validator