Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt20 Structured version   Visualization version   GIF version

Theorem metakunt20 40144
Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt20.1 (𝜑𝑀 ∈ ℕ)
metakunt20.2 (𝜑𝐼 ∈ ℕ)
metakunt20.3 (𝜑𝐼𝑀)
metakunt20.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt20.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt20.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
metakunt20.7 (𝜑𝑋 ∈ (1...𝑀))
metakunt20.8 (𝜑𝑋 = 𝑀)
Assertion
Ref Expression
metakunt20 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt20
StepHypRef Expression
1 metakunt20.4 . . . . 5 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
21a1i 11 . . . 4 (𝜑𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))))))
3 eqeq1 2742 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 = 𝑀𝑋 = 𝑀))
4 breq1 5077 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 oveq1 7282 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6 oveq1 7282 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
74, 5, 6ifbieq12d 4487 . . . . . . 7 (𝑥 = 𝑋 → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
83, 7ifbieq2d 4485 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
98adantl 482 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
10 metakunt20.8 . . . . . . . 8 (𝜑𝑋 = 𝑀)
11 iftrue 4465 . . . . . . . 8 (𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1210, 11syl 17 . . . . . . 7 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1312adantr 481 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1410eqcomd 2744 . . . . . . 7 (𝜑𝑀 = 𝑋)
1514adantr 481 . . . . . 6 ((𝜑𝑥 = 𝑋) → 𝑀 = 𝑋)
1613, 15eqtrd 2778 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑋)
179, 16eqtrd 2778 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = 𝑋)
18 metakunt20.7 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
192, 17, 18, 18fvmptd 6882 . . 3 (𝜑 → (𝐵𝑋) = 𝑋)
2010fveq2d 6778 . . . . 5 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑀))
21 metakunt20.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
22 fvsng 7052 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ({⟨𝑀, 𝑀⟩}‘𝑀) = 𝑀)
2321, 21, 22syl2anc 584 . . . . 5 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑀) = 𝑀)
2420, 23eqtrd 2778 . . . 4 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = 𝑀)
2524eqcomd 2744 . . 3 (𝜑𝑀 = ({⟨𝑀, 𝑀⟩}‘𝑋))
2619, 10, 253eqtrd 2782 . 2 (𝜑 → (𝐵𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑋))
27 metakunt20.2 . . . . . . 7 (𝜑𝐼 ∈ ℕ)
28 metakunt20.3 . . . . . . 7 (𝜑𝐼𝑀)
29 metakunt20.5 . . . . . . 7 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
30 metakunt20.6 . . . . . . 7 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
3121, 27, 28, 1, 29, 30metakunt19 40143 . . . . . 6 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
3231simpld 495 . . . . 5 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
3332simp3d 1143 . . . 4 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
3431simprd 496 . . . 4 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
3521nnzd 12425 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
36 fzsn 13298 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3735, 36syl 17 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
3837ineq2d 4146 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}))
3938eqcomd 2744 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)))
4027nncnd 11989 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℂ)
4121nncnd 11989 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℂ)
4240, 41pncan3d 11335 . . . . . . . . . . . . 13 (𝜑 → (𝐼 + (𝑀𝐼)) = 𝑀)
4342oveq2d 7291 . . . . . . . . . . . 12 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = (1..^𝑀))
44 fzoval 13388 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (1..^𝑀) = (1...(𝑀 − 1)))
4535, 44syl 17 . . . . . . . . . . . 12 (𝜑 → (1..^𝑀) = (1...(𝑀 − 1)))
4643, 45eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = (1...(𝑀 − 1)))
4746eqcomd 2744 . . . . . . . . . 10 (𝜑 → (1...(𝑀 − 1)) = (1..^(𝐼 + (𝑀𝐼))))
48 nnuz 12621 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
4927, 48eleqtrdi 2849 . . . . . . . . . . 11 (𝜑𝐼 ∈ (ℤ‘1))
5027nnzd 12425 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℤ)
5150, 35jca 512 . . . . . . . . . . . . 13 (𝜑 → (𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ))
52 znn0sub 12367 . . . . . . . . . . . . 13 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼𝑀 ↔ (𝑀𝐼) ∈ ℕ0))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐼𝑀 ↔ (𝑀𝐼) ∈ ℕ0))
5428, 53mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑀𝐼) ∈ ℕ0)
55 fzoun 13424 . . . . . . . . . . 11 ((𝐼 ∈ (ℤ‘1) ∧ (𝑀𝐼) ∈ ℕ0) → (1..^(𝐼 + (𝑀𝐼))) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
5649, 54, 55syl2anc 584 . . . . . . . . . 10 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
5747, 56eqtrd 2778 . . . . . . . . 9 (𝜑 → (1...(𝑀 − 1)) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
58 fzoval 13388 . . . . . . . . . . 11 (𝐼 ∈ ℤ → (1..^𝐼) = (1...(𝐼 − 1)))
5950, 58syl 17 . . . . . . . . . 10 (𝜑 → (1..^𝐼) = (1...(𝐼 − 1)))
6042oveq2d 7291 . . . . . . . . . . 11 (𝜑 → (𝐼..^(𝐼 + (𝑀𝐼))) = (𝐼..^𝑀))
61 fzoval 13388 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝐼..^𝑀) = (𝐼...(𝑀 − 1)))
6235, 61syl 17 . . . . . . . . . . 11 (𝜑 → (𝐼..^𝑀) = (𝐼...(𝑀 − 1)))
6360, 62eqtrd 2778 . . . . . . . . . 10 (𝜑 → (𝐼..^(𝐼 + (𝑀𝐼))) = (𝐼...(𝑀 − 1)))
6459, 63uneq12d 4098 . . . . . . . . 9 (𝜑 → ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6557, 64eqtrd 2778 . . . . . . . 8 (𝜑 → (1...(𝑀 − 1)) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6665ineq1d 4145 . . . . . . 7 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)))
6766eqcomd 2744 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)))
6821nnred 11988 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
6968ltm1d 11907 . . . . . . 7 (𝜑 → (𝑀 − 1) < 𝑀)
70 fzdisj 13283 . . . . . . 7 ((𝑀 − 1) < 𝑀 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
7169, 70syl 17 . . . . . 6 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
7267, 71eqtrd 2778 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = ∅)
7339, 72eqtrd 2778 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
74 elsng 4575 . . . . . 6 (𝑋 ∈ (1...𝑀) → (𝑋 ∈ {𝑀} ↔ 𝑋 = 𝑀))
7518, 74syl 17 . . . . 5 (𝜑 → (𝑋 ∈ {𝑀} ↔ 𝑋 = 𝑀))
7610, 75mpbird 256 . . . 4 (𝜑𝑋 ∈ {𝑀})
7733, 34, 73, 76fvun2d 6862 . . 3 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑋))
7877eqcomd 2744 . 2 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
7926, 78eqtrd 2778 1 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cun 3885  cin 3886  c0 4256  ifcif 4459  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157   Fn wfn 6428  cfv 6433  (class class class)co 7275  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383
This theorem is referenced by:  metakunt23  40147
  Copyright terms: Public domain W3C validator