Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt20 Structured version   Visualization version   GIF version

Theorem metakunt20 42226
Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt20.1 (𝜑𝑀 ∈ ℕ)
metakunt20.2 (𝜑𝐼 ∈ ℕ)
metakunt20.3 (𝜑𝐼𝑀)
metakunt20.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt20.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt20.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
metakunt20.7 (𝜑𝑋 ∈ (1...𝑀))
metakunt20.8 (𝜑𝑋 = 𝑀)
Assertion
Ref Expression
metakunt20 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt20
StepHypRef Expression
1 metakunt20.4 . . . . 5 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
21a1i 11 . . . 4 (𝜑𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))))))
3 eqeq1 2740 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 = 𝑀𝑋 = 𝑀))
4 breq1 5145 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 oveq1 7439 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6 oveq1 7439 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
74, 5, 6ifbieq12d 4553 . . . . . . 7 (𝑥 = 𝑋 → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
83, 7ifbieq2d 4551 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
98adantl 481 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
10 metakunt20.8 . . . . . . . 8 (𝜑𝑋 = 𝑀)
11 iftrue 4530 . . . . . . . 8 (𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1210, 11syl 17 . . . . . . 7 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1312adantr 480 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1410eqcomd 2742 . . . . . . 7 (𝜑𝑀 = 𝑋)
1514adantr 480 . . . . . 6 ((𝜑𝑥 = 𝑋) → 𝑀 = 𝑋)
1613, 15eqtrd 2776 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑋)
179, 16eqtrd 2776 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = 𝑋)
18 metakunt20.7 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
192, 17, 18, 18fvmptd 7022 . . 3 (𝜑 → (𝐵𝑋) = 𝑋)
2010fveq2d 6909 . . . . 5 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑀))
21 metakunt20.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
22 fvsng 7201 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ({⟨𝑀, 𝑀⟩}‘𝑀) = 𝑀)
2321, 21, 22syl2anc 584 . . . . 5 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑀) = 𝑀)
2420, 23eqtrd 2776 . . . 4 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = 𝑀)
2524eqcomd 2742 . . 3 (𝜑𝑀 = ({⟨𝑀, 𝑀⟩}‘𝑋))
2619, 10, 253eqtrd 2780 . 2 (𝜑 → (𝐵𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑋))
27 metakunt20.2 . . . . . . 7 (𝜑𝐼 ∈ ℕ)
28 metakunt20.3 . . . . . . 7 (𝜑𝐼𝑀)
29 metakunt20.5 . . . . . . 7 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
30 metakunt20.6 . . . . . . 7 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
3121, 27, 28, 1, 29, 30metakunt19 42225 . . . . . 6 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
3231simpld 494 . . . . 5 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
3332simp3d 1144 . . . 4 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
3431simprd 495 . . . 4 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
3521nnzd 12642 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
36 fzsn 13607 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3735, 36syl 17 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
3837ineq2d 4219 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}))
3938eqcomd 2742 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)))
4027nncnd 12283 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℂ)
4121nncnd 12283 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℂ)
4240, 41pncan3d 11624 . . . . . . . . . . . . 13 (𝜑 → (𝐼 + (𝑀𝐼)) = 𝑀)
4342oveq2d 7448 . . . . . . . . . . . 12 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = (1..^𝑀))
44 fzoval 13701 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (1..^𝑀) = (1...(𝑀 − 1)))
4535, 44syl 17 . . . . . . . . . . . 12 (𝜑 → (1..^𝑀) = (1...(𝑀 − 1)))
4643, 45eqtrd 2776 . . . . . . . . . . 11 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = (1...(𝑀 − 1)))
4746eqcomd 2742 . . . . . . . . . 10 (𝜑 → (1...(𝑀 − 1)) = (1..^(𝐼 + (𝑀𝐼))))
48 nnuz 12922 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
4927, 48eleqtrdi 2850 . . . . . . . . . . 11 (𝜑𝐼 ∈ (ℤ‘1))
5027nnzd 12642 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℤ)
5150, 35jca 511 . . . . . . . . . . . . 13 (𝜑 → (𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ))
52 znn0sub 12666 . . . . . . . . . . . . 13 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼𝑀 ↔ (𝑀𝐼) ∈ ℕ0))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐼𝑀 ↔ (𝑀𝐼) ∈ ℕ0))
5428, 53mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑀𝐼) ∈ ℕ0)
55 fzoun 13737 . . . . . . . . . . 11 ((𝐼 ∈ (ℤ‘1) ∧ (𝑀𝐼) ∈ ℕ0) → (1..^(𝐼 + (𝑀𝐼))) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
5649, 54, 55syl2anc 584 . . . . . . . . . 10 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
5747, 56eqtrd 2776 . . . . . . . . 9 (𝜑 → (1...(𝑀 − 1)) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
58 fzoval 13701 . . . . . . . . . . 11 (𝐼 ∈ ℤ → (1..^𝐼) = (1...(𝐼 − 1)))
5950, 58syl 17 . . . . . . . . . 10 (𝜑 → (1..^𝐼) = (1...(𝐼 − 1)))
6042oveq2d 7448 . . . . . . . . . . 11 (𝜑 → (𝐼..^(𝐼 + (𝑀𝐼))) = (𝐼..^𝑀))
61 fzoval 13701 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝐼..^𝑀) = (𝐼...(𝑀 − 1)))
6235, 61syl 17 . . . . . . . . . . 11 (𝜑 → (𝐼..^𝑀) = (𝐼...(𝑀 − 1)))
6360, 62eqtrd 2776 . . . . . . . . . 10 (𝜑 → (𝐼..^(𝐼 + (𝑀𝐼))) = (𝐼...(𝑀 − 1)))
6459, 63uneq12d 4168 . . . . . . . . 9 (𝜑 → ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6557, 64eqtrd 2776 . . . . . . . 8 (𝜑 → (1...(𝑀 − 1)) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6665ineq1d 4218 . . . . . . 7 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)))
6766eqcomd 2742 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)))
6821nnred 12282 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
6968ltm1d 12201 . . . . . . 7 (𝜑 → (𝑀 − 1) < 𝑀)
70 fzdisj 13592 . . . . . . 7 ((𝑀 − 1) < 𝑀 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
7169, 70syl 17 . . . . . 6 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
7267, 71eqtrd 2776 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = ∅)
7339, 72eqtrd 2776 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
74 elsng 4639 . . . . . 6 (𝑋 ∈ (1...𝑀) → (𝑋 ∈ {𝑀} ↔ 𝑋 = 𝑀))
7518, 74syl 17 . . . . 5 (𝜑 → (𝑋 ∈ {𝑀} ↔ 𝑋 = 𝑀))
7610, 75mpbird 257 . . . 4 (𝜑𝑋 ∈ {𝑀})
7733, 34, 73, 76fvun2d 7002 . . 3 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑋))
7877eqcomd 2742 . 2 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
7926, 78eqtrd 2776 1 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  cun 3948  cin 3949  c0 4332  ifcif 4524  {csn 4625  cop 4631   class class class wbr 5142  cmpt 5224   Fn wfn 6555  cfv 6560  (class class class)co 7432  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493  cn 12267  0cn0 12528  cz 12615  cuz 12879  ...cfz 13548  ..^cfzo 13695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696
This theorem is referenced by:  metakunt23  42229
  Copyright terms: Public domain W3C validator