Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt20 Structured version   Visualization version   GIF version

Theorem metakunt20 41731
Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt20.1 (𝜑𝑀 ∈ ℕ)
metakunt20.2 (𝜑𝐼 ∈ ℕ)
metakunt20.3 (𝜑𝐼𝑀)
metakunt20.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt20.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt20.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
metakunt20.7 (𝜑𝑋 ∈ (1...𝑀))
metakunt20.8 (𝜑𝑋 = 𝑀)
Assertion
Ref Expression
metakunt20 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt20
StepHypRef Expression
1 metakunt20.4 . . . . 5 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
21a1i 11 . . . 4 (𝜑𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))))))
3 eqeq1 2729 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 = 𝑀𝑋 = 𝑀))
4 breq1 5146 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 oveq1 7422 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6 oveq1 7422 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
74, 5, 6ifbieq12d 4552 . . . . . . 7 (𝑥 = 𝑋 → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
83, 7ifbieq2d 4550 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
98adantl 480 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
10 metakunt20.8 . . . . . . . 8 (𝜑𝑋 = 𝑀)
11 iftrue 4530 . . . . . . . 8 (𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1210, 11syl 17 . . . . . . 7 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1312adantr 479 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1410eqcomd 2731 . . . . . . 7 (𝜑𝑀 = 𝑋)
1514adantr 479 . . . . . 6 ((𝜑𝑥 = 𝑋) → 𝑀 = 𝑋)
1613, 15eqtrd 2765 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑋)
179, 16eqtrd 2765 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = 𝑋)
18 metakunt20.7 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
192, 17, 18, 18fvmptd 7006 . . 3 (𝜑 → (𝐵𝑋) = 𝑋)
2010fveq2d 6895 . . . . 5 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑀))
21 metakunt20.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
22 fvsng 7184 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ({⟨𝑀, 𝑀⟩}‘𝑀) = 𝑀)
2321, 21, 22syl2anc 582 . . . . 5 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑀) = 𝑀)
2420, 23eqtrd 2765 . . . 4 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = 𝑀)
2524eqcomd 2731 . . 3 (𝜑𝑀 = ({⟨𝑀, 𝑀⟩}‘𝑋))
2619, 10, 253eqtrd 2769 . 2 (𝜑 → (𝐵𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑋))
27 metakunt20.2 . . . . . . 7 (𝜑𝐼 ∈ ℕ)
28 metakunt20.3 . . . . . . 7 (𝜑𝐼𝑀)
29 metakunt20.5 . . . . . . 7 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
30 metakunt20.6 . . . . . . 7 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
3121, 27, 28, 1, 29, 30metakunt19 41730 . . . . . 6 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
3231simpld 493 . . . . 5 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
3332simp3d 1141 . . . 4 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
3431simprd 494 . . . 4 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
3521nnzd 12613 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
36 fzsn 13573 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3735, 36syl 17 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
3837ineq2d 4206 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}))
3938eqcomd 2731 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)))
4027nncnd 12256 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℂ)
4121nncnd 12256 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℂ)
4240, 41pncan3d 11602 . . . . . . . . . . . . 13 (𝜑 → (𝐼 + (𝑀𝐼)) = 𝑀)
4342oveq2d 7431 . . . . . . . . . . . 12 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = (1..^𝑀))
44 fzoval 13663 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (1..^𝑀) = (1...(𝑀 − 1)))
4535, 44syl 17 . . . . . . . . . . . 12 (𝜑 → (1..^𝑀) = (1...(𝑀 − 1)))
4643, 45eqtrd 2765 . . . . . . . . . . 11 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = (1...(𝑀 − 1)))
4746eqcomd 2731 . . . . . . . . . 10 (𝜑 → (1...(𝑀 − 1)) = (1..^(𝐼 + (𝑀𝐼))))
48 nnuz 12893 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
4927, 48eleqtrdi 2835 . . . . . . . . . . 11 (𝜑𝐼 ∈ (ℤ‘1))
5027nnzd 12613 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℤ)
5150, 35jca 510 . . . . . . . . . . . . 13 (𝜑 → (𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ))
52 znn0sub 12637 . . . . . . . . . . . . 13 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼𝑀 ↔ (𝑀𝐼) ∈ ℕ0))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐼𝑀 ↔ (𝑀𝐼) ∈ ℕ0))
5428, 53mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑀𝐼) ∈ ℕ0)
55 fzoun 13699 . . . . . . . . . . 11 ((𝐼 ∈ (ℤ‘1) ∧ (𝑀𝐼) ∈ ℕ0) → (1..^(𝐼 + (𝑀𝐼))) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
5649, 54, 55syl2anc 582 . . . . . . . . . 10 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
5747, 56eqtrd 2765 . . . . . . . . 9 (𝜑 → (1...(𝑀 − 1)) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
58 fzoval 13663 . . . . . . . . . . 11 (𝐼 ∈ ℤ → (1..^𝐼) = (1...(𝐼 − 1)))
5950, 58syl 17 . . . . . . . . . 10 (𝜑 → (1..^𝐼) = (1...(𝐼 − 1)))
6042oveq2d 7431 . . . . . . . . . . 11 (𝜑 → (𝐼..^(𝐼 + (𝑀𝐼))) = (𝐼..^𝑀))
61 fzoval 13663 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝐼..^𝑀) = (𝐼...(𝑀 − 1)))
6235, 61syl 17 . . . . . . . . . . 11 (𝜑 → (𝐼..^𝑀) = (𝐼...(𝑀 − 1)))
6360, 62eqtrd 2765 . . . . . . . . . 10 (𝜑 → (𝐼..^(𝐼 + (𝑀𝐼))) = (𝐼...(𝑀 − 1)))
6459, 63uneq12d 4157 . . . . . . . . 9 (𝜑 → ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6557, 64eqtrd 2765 . . . . . . . 8 (𝜑 → (1...(𝑀 − 1)) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6665ineq1d 4205 . . . . . . 7 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)))
6766eqcomd 2731 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)))
6821nnred 12255 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
6968ltm1d 12174 . . . . . . 7 (𝜑 → (𝑀 − 1) < 𝑀)
70 fzdisj 13558 . . . . . . 7 ((𝑀 − 1) < 𝑀 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
7169, 70syl 17 . . . . . 6 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
7267, 71eqtrd 2765 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = ∅)
7339, 72eqtrd 2765 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
74 elsng 4638 . . . . . 6 (𝑋 ∈ (1...𝑀) → (𝑋 ∈ {𝑀} ↔ 𝑋 = 𝑀))
7518, 74syl 17 . . . . 5 (𝜑 → (𝑋 ∈ {𝑀} ↔ 𝑋 = 𝑀))
7610, 75mpbird 256 . . . 4 (𝜑𝑋 ∈ {𝑀})
7733, 34, 73, 76fvun2d 6986 . . 3 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑋))
7877eqcomd 2731 . 2 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
7926, 78eqtrd 2765 1 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  cun 3938  cin 3939  c0 4318  ifcif 4524  {csn 4624  cop 4630   class class class wbr 5143  cmpt 5226   Fn wfn 6537  cfv 6542  (class class class)co 7415  1c1 11137   + caddc 11139   < clt 11276  cle 11277  cmin 11472  cn 12240  0cn0 12500  cz 12586  cuz 12850  ...cfz 13514  ..^cfzo 13657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-fz 13515  df-fzo 13658
This theorem is referenced by:  metakunt23  41734
  Copyright terms: Public domain W3C validator