Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt20 Structured version   Visualization version   GIF version

Theorem metakunt20 39651
Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt20.1 (𝜑𝑀 ∈ ℕ)
metakunt20.2 (𝜑𝐼 ∈ ℕ)
metakunt20.3 (𝜑𝐼𝑀)
metakunt20.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt20.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt20.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
metakunt20.7 (𝜑𝑋 ∈ (1...𝑀))
metakunt20.8 (𝜑𝑋 = 𝑀)
Assertion
Ref Expression
metakunt20 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt20
StepHypRef Expression
1 metakunt20.4 . . . . 5 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
21a1i 11 . . . 4 (𝜑𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))))))
3 eqeq1 2763 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 = 𝑀𝑋 = 𝑀))
4 breq1 5028 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 oveq1 7150 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6 oveq1 7150 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
74, 5, 6ifbieq12d 4441 . . . . . . 7 (𝑥 = 𝑋 → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
83, 7ifbieq2d 4439 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
98adantl 486 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
10 metakunt20.8 . . . . . . . 8 (𝜑𝑋 = 𝑀)
11 iftrue 4419 . . . . . . . 8 (𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1210, 11syl 17 . . . . . . 7 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1312adantr 485 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1410eqcomd 2765 . . . . . . 7 (𝜑𝑀 = 𝑋)
1514adantr 485 . . . . . 6 ((𝜑𝑥 = 𝑋) → 𝑀 = 𝑋)
1613, 15eqtrd 2794 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑋)
179, 16eqtrd 2794 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = 𝑋)
18 metakunt20.7 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
192, 17, 18, 18fvmptd 6759 . . 3 (𝜑 → (𝐵𝑋) = 𝑋)
2010fveq2d 6655 . . . . 5 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑀))
21 metakunt20.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
22 fvsng 6926 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ({⟨𝑀, 𝑀⟩}‘𝑀) = 𝑀)
2321, 21, 22syl2anc 588 . . . . 5 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑀) = 𝑀)
2420, 23eqtrd 2794 . . . 4 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = 𝑀)
2524eqcomd 2765 . . 3 (𝜑𝑀 = ({⟨𝑀, 𝑀⟩}‘𝑋))
2619, 10, 253eqtrd 2798 . 2 (𝜑 → (𝐵𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑋))
27 metakunt20.2 . . . . . . 7 (𝜑𝐼 ∈ ℕ)
28 metakunt20.3 . . . . . . 7 (𝜑𝐼𝑀)
29 metakunt20.5 . . . . . . 7 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
30 metakunt20.6 . . . . . . 7 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
3121, 27, 28, 1, 29, 30metakunt19 39650 . . . . . 6 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
3231simpld 499 . . . . 5 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
3332simp3d 1142 . . . 4 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
3431simprd 500 . . . 4 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
3521nnzd 12110 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
36 fzsn 12983 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3735, 36syl 17 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
3837ineq2d 4113 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}))
3938eqcomd 2765 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)))
4027nncnd 11675 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℂ)
4121nncnd 11675 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℂ)
4240, 41pncan3d 11023 . . . . . . . . . . . . 13 (𝜑 → (𝐼 + (𝑀𝐼)) = 𝑀)
4342oveq2d 7159 . . . . . . . . . . . 12 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = (1..^𝑀))
44 fzoval 13073 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (1..^𝑀) = (1...(𝑀 − 1)))
4535, 44syl 17 . . . . . . . . . . . 12 (𝜑 → (1..^𝑀) = (1...(𝑀 − 1)))
4643, 45eqtrd 2794 . . . . . . . . . . 11 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = (1...(𝑀 − 1)))
4746eqcomd 2765 . . . . . . . . . 10 (𝜑 → (1...(𝑀 − 1)) = (1..^(𝐼 + (𝑀𝐼))))
48 nnuz 12306 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
4927, 48eleqtrdi 2861 . . . . . . . . . . 11 (𝜑𝐼 ∈ (ℤ‘1))
5027nnzd 12110 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℤ)
5150, 35jca 516 . . . . . . . . . . . . 13 (𝜑 → (𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ))
52 znn0sub 12053 . . . . . . . . . . . . 13 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼𝑀 ↔ (𝑀𝐼) ∈ ℕ0))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐼𝑀 ↔ (𝑀𝐼) ∈ ℕ0))
5428, 53mpbid 235 . . . . . . . . . . 11 (𝜑 → (𝑀𝐼) ∈ ℕ0)
55 fzoun 13108 . . . . . . . . . . 11 ((𝐼 ∈ (ℤ‘1) ∧ (𝑀𝐼) ∈ ℕ0) → (1..^(𝐼 + (𝑀𝐼))) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
5649, 54, 55syl2anc 588 . . . . . . . . . 10 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
5747, 56eqtrd 2794 . . . . . . . . 9 (𝜑 → (1...(𝑀 − 1)) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
58 fzoval 13073 . . . . . . . . . . 11 (𝐼 ∈ ℤ → (1..^𝐼) = (1...(𝐼 − 1)))
5950, 58syl 17 . . . . . . . . . 10 (𝜑 → (1..^𝐼) = (1...(𝐼 − 1)))
6042oveq2d 7159 . . . . . . . . . . 11 (𝜑 → (𝐼..^(𝐼 + (𝑀𝐼))) = (𝐼..^𝑀))
61 fzoval 13073 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝐼..^𝑀) = (𝐼...(𝑀 − 1)))
6235, 61syl 17 . . . . . . . . . . 11 (𝜑 → (𝐼..^𝑀) = (𝐼...(𝑀 − 1)))
6360, 62eqtrd 2794 . . . . . . . . . 10 (𝜑 → (𝐼..^(𝐼 + (𝑀𝐼))) = (𝐼...(𝑀 − 1)))
6459, 63uneq12d 4065 . . . . . . . . 9 (𝜑 → ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6557, 64eqtrd 2794 . . . . . . . 8 (𝜑 → (1...(𝑀 − 1)) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6665ineq1d 4112 . . . . . . 7 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)))
6766eqcomd 2765 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)))
6821nnred 11674 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
6968ltm1d 11595 . . . . . . 7 (𝜑 → (𝑀 − 1) < 𝑀)
70 fzdisj 12968 . . . . . . 7 ((𝑀 − 1) < 𝑀 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
7169, 70syl 17 . . . . . 6 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
7267, 71eqtrd 2794 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = ∅)
7339, 72eqtrd 2794 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
74 elsng 4529 . . . . . 6 (𝑋 ∈ (1...𝑀) → (𝑋 ∈ {𝑀} ↔ 𝑋 = 𝑀))
7518, 74syl 17 . . . . 5 (𝜑 → (𝑋 ∈ {𝑀} ↔ 𝑋 = 𝑀))
7610, 75mpbird 260 . . . 4 (𝜑𝑋 ∈ {𝑀})
7733, 34, 73, 76fvun2d 6739 . . 3 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑋))
7877eqcomd 2765 . 2 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
7926, 78eqtrd 2794 1 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  cun 3852  cin 3853  c0 4221  ifcif 4413  {csn 4515  cop 4521   class class class wbr 5025  cmpt 5105   Fn wfn 6323  cfv 6328  (class class class)co 7143  1c1 10561   + caddc 10563   < clt 10698  cle 10699  cmin 10893  cn 11659  0cn0 11919  cz 12005  cuz 12267  ...cfz 12924  ..^cfzo 13067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-fz 12925  df-fzo 13068
This theorem is referenced by:  metakunt23  39654
  Copyright terms: Public domain W3C validator