Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt20 Structured version   Visualization version   GIF version

Theorem metakunt20 40596
Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt20.1 (𝜑𝑀 ∈ ℕ)
metakunt20.2 (𝜑𝐼 ∈ ℕ)
metakunt20.3 (𝜑𝐼𝑀)
metakunt20.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt20.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt20.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
metakunt20.7 (𝜑𝑋 ∈ (1...𝑀))
metakunt20.8 (𝜑𝑋 = 𝑀)
Assertion
Ref Expression
metakunt20 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt20
StepHypRef Expression
1 metakunt20.4 . . . . 5 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
21a1i 11 . . . 4 (𝜑𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))))))
3 eqeq1 2740 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 = 𝑀𝑋 = 𝑀))
4 breq1 5108 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 oveq1 7364 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6 oveq1 7364 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
74, 5, 6ifbieq12d 4514 . . . . . . 7 (𝑥 = 𝑋 → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
83, 7ifbieq2d 4512 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
98adantl 482 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
10 metakunt20.8 . . . . . . . 8 (𝜑𝑋 = 𝑀)
11 iftrue 4492 . . . . . . . 8 (𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1210, 11syl 17 . . . . . . 7 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1312adantr 481 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑀)
1410eqcomd 2742 . . . . . . 7 (𝜑𝑀 = 𝑋)
1514adantr 481 . . . . . 6 ((𝜑𝑥 = 𝑋) → 𝑀 = 𝑋)
1613, 15eqtrd 2776 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = 𝑋)
179, 16eqtrd 2776 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = 𝑋)
18 metakunt20.7 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
192, 17, 18, 18fvmptd 6955 . . 3 (𝜑 → (𝐵𝑋) = 𝑋)
2010fveq2d 6846 . . . . 5 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑀))
21 metakunt20.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
22 fvsng 7126 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ({⟨𝑀, 𝑀⟩}‘𝑀) = 𝑀)
2321, 21, 22syl2anc 584 . . . . 5 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑀) = 𝑀)
2420, 23eqtrd 2776 . . . 4 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = 𝑀)
2524eqcomd 2742 . . 3 (𝜑𝑀 = ({⟨𝑀, 𝑀⟩}‘𝑋))
2619, 10, 253eqtrd 2780 . 2 (𝜑 → (𝐵𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑋))
27 metakunt20.2 . . . . . . 7 (𝜑𝐼 ∈ ℕ)
28 metakunt20.3 . . . . . . 7 (𝜑𝐼𝑀)
29 metakunt20.5 . . . . . . 7 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
30 metakunt20.6 . . . . . . 7 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
3121, 27, 28, 1, 29, 30metakunt19 40595 . . . . . 6 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
3231simpld 495 . . . . 5 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
3332simp3d 1144 . . . 4 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
3431simprd 496 . . . 4 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
3521nnzd 12526 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
36 fzsn 13483 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3735, 36syl 17 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
3837ineq2d 4172 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}))
3938eqcomd 2742 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)))
4027nncnd 12169 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℂ)
4121nncnd 12169 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℂ)
4240, 41pncan3d 11515 . . . . . . . . . . . . 13 (𝜑 → (𝐼 + (𝑀𝐼)) = 𝑀)
4342oveq2d 7373 . . . . . . . . . . . 12 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = (1..^𝑀))
44 fzoval 13573 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (1..^𝑀) = (1...(𝑀 − 1)))
4535, 44syl 17 . . . . . . . . . . . 12 (𝜑 → (1..^𝑀) = (1...(𝑀 − 1)))
4643, 45eqtrd 2776 . . . . . . . . . . 11 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = (1...(𝑀 − 1)))
4746eqcomd 2742 . . . . . . . . . 10 (𝜑 → (1...(𝑀 − 1)) = (1..^(𝐼 + (𝑀𝐼))))
48 nnuz 12806 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
4927, 48eleqtrdi 2848 . . . . . . . . . . 11 (𝜑𝐼 ∈ (ℤ‘1))
5027nnzd 12526 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℤ)
5150, 35jca 512 . . . . . . . . . . . . 13 (𝜑 → (𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ))
52 znn0sub 12550 . . . . . . . . . . . . 13 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼𝑀 ↔ (𝑀𝐼) ∈ ℕ0))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐼𝑀 ↔ (𝑀𝐼) ∈ ℕ0))
5428, 53mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑀𝐼) ∈ ℕ0)
55 fzoun 13609 . . . . . . . . . . 11 ((𝐼 ∈ (ℤ‘1) ∧ (𝑀𝐼) ∈ ℕ0) → (1..^(𝐼 + (𝑀𝐼))) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
5649, 54, 55syl2anc 584 . . . . . . . . . 10 (𝜑 → (1..^(𝐼 + (𝑀𝐼))) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
5747, 56eqtrd 2776 . . . . . . . . 9 (𝜑 → (1...(𝑀 − 1)) = ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))))
58 fzoval 13573 . . . . . . . . . . 11 (𝐼 ∈ ℤ → (1..^𝐼) = (1...(𝐼 − 1)))
5950, 58syl 17 . . . . . . . . . 10 (𝜑 → (1..^𝐼) = (1...(𝐼 − 1)))
6042oveq2d 7373 . . . . . . . . . . 11 (𝜑 → (𝐼..^(𝐼 + (𝑀𝐼))) = (𝐼..^𝑀))
61 fzoval 13573 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝐼..^𝑀) = (𝐼...(𝑀 − 1)))
6235, 61syl 17 . . . . . . . . . . 11 (𝜑 → (𝐼..^𝑀) = (𝐼...(𝑀 − 1)))
6360, 62eqtrd 2776 . . . . . . . . . 10 (𝜑 → (𝐼..^(𝐼 + (𝑀𝐼))) = (𝐼...(𝑀 − 1)))
6459, 63uneq12d 4124 . . . . . . . . 9 (𝜑 → ((1..^𝐼) ∪ (𝐼..^(𝐼 + (𝑀𝐼)))) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6557, 64eqtrd 2776 . . . . . . . 8 (𝜑 → (1...(𝑀 − 1)) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6665ineq1d 4171 . . . . . . 7 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)))
6766eqcomd 2742 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)))
6821nnred 12168 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
6968ltm1d 12087 . . . . . . 7 (𝜑 → (𝑀 − 1) < 𝑀)
70 fzdisj 13468 . . . . . . 7 ((𝑀 − 1) < 𝑀 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
7169, 70syl 17 . . . . . 6 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
7267, 71eqtrd 2776 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ (𝑀...𝑀)) = ∅)
7339, 72eqtrd 2776 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
74 elsng 4600 . . . . . 6 (𝑋 ∈ (1...𝑀) → (𝑋 ∈ {𝑀} ↔ 𝑋 = 𝑀))
7518, 74syl 17 . . . . 5 (𝜑 → (𝑋 ∈ {𝑀} ↔ 𝑋 = 𝑀))
7610, 75mpbird 256 . . . 4 (𝜑𝑋 ∈ {𝑀})
7733, 34, 73, 76fvun2d 6935 . . 3 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = ({⟨𝑀, 𝑀⟩}‘𝑋))
7877eqcomd 2742 . 2 (𝜑 → ({⟨𝑀, 𝑀⟩}‘𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
7926, 78eqtrd 2776 1 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cun 3908  cin 3909  c0 4282  ifcif 4486  {csn 4586  cop 4592   class class class wbr 5105  cmpt 5188   Fn wfn 6491  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cn 12153  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  ..^cfzo 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568
This theorem is referenced by:  metakunt23  40599
  Copyright terms: Public domain W3C validator