| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > goelel3xp | Structured version Visualization version GIF version | ||
| Description: A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023.) |
| Ref | Expression |
|---|---|
| goelel3xp | ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) ∈ (ω × (ω × ω))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | goel 35286 | . 2 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) | |
| 2 | peano1 7891 | . . . 4 ⊢ ∅ ∈ ω | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∅ ∈ ω) |
| 4 | opelxpi 5702 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈𝐼, 𝐽〉 ∈ (ω × ω)) | |
| 5 | 3, 4 | opelxpd 5704 | . 2 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈∅, 〈𝐼, 𝐽〉〉 ∈ (ω × (ω × ω))) |
| 6 | 1, 5 | eqeltrd 2833 | 1 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) ∈ (ω × (ω × ω))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∅c0 4313 〈cop 4612 × cxp 5663 (class class class)co 7412 ωcom 7868 ∈𝑔cgoe 35272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-ord 6366 df-on 6367 df-lim 6368 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-om 7869 df-goel 35279 |
| This theorem is referenced by: satfv0 35297 satf00 35313 |
| Copyright terms: Public domain | W3C validator |