| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > goelel3xp | Structured version Visualization version GIF version | ||
| Description: A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023.) |
| Ref | Expression |
|---|---|
| goelel3xp | ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) ∈ (ω × (ω × ω))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | goel 35336 | . 2 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) | |
| 2 | peano1 7873 | . . . 4 ⊢ ∅ ∈ ω | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∅ ∈ ω) |
| 4 | opelxpi 5683 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈𝐼, 𝐽〉 ∈ (ω × ω)) | |
| 5 | 3, 4 | opelxpd 5685 | . 2 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈∅, 〈𝐼, 𝐽〉〉 ∈ (ω × (ω × ω))) |
| 6 | 1, 5 | eqeltrd 2829 | 1 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) ∈ (ω × (ω × ω))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∅c0 4304 〈cop 4603 × cxp 5644 (class class class)co 7394 ωcom 7850 ∈𝑔cgoe 35322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-ord 6343 df-on 6344 df-lim 6345 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-om 7851 df-goel 35329 |
| This theorem is referenced by: satfv0 35347 satf00 35363 |
| Copyright terms: Public domain | W3C validator |