Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goelel3xp Structured version   Visualization version   GIF version

Theorem goelel3xp 35335
Description: A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023.)
Assertion
Ref Expression
goelel3xp ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ (ω × (ω × ω)))

Proof of Theorem goelel3xp
StepHypRef Expression
1 goel 35334 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
2 peano1 7865 . . . 4 ∅ ∈ ω
32a1i 11 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∅ ∈ ω)
4 opelxpi 5675 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨𝐼, 𝐽⟩ ∈ (ω × ω))
53, 4opelxpd 5677 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ (ω × (ω × ω)))
61, 5eqeltrd 2828 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ (ω × (ω × ω)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  c0 4296  cop 4595   × cxp 5636  (class class class)co 7387  ωcom 7842  𝑔cgoe 35320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-ord 6335  df-on 6336  df-lim 6337  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-om 7843  df-goel 35327
This theorem is referenced by:  satfv0  35345  satf00  35361
  Copyright terms: Public domain W3C validator