Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goelel3xp Structured version   Visualization version   GIF version

Theorem goelel3xp 35413
Description: A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023.)
Assertion
Ref Expression
goelel3xp ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ (ω × (ω × ω)))

Proof of Theorem goelel3xp
StepHypRef Expression
1 goel 35412 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
2 peano1 7825 . . . 4 ∅ ∈ ω
32a1i 11 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∅ ∈ ω)
4 opelxpi 5656 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨𝐼, 𝐽⟩ ∈ (ω × ω))
53, 4opelxpd 5658 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ (ω × (ω × ω)))
61, 5eqeltrd 2833 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ (ω × (ω × ω)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  c0 4282  cop 4581   × cxp 5617  (class class class)co 7352  ωcom 7802  𝑔cgoe 35398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-ord 6314  df-on 6315  df-lim 6316  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-om 7803  df-goel 35405
This theorem is referenced by:  satfv0  35423  satf00  35439
  Copyright terms: Public domain W3C validator