MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpprop Structured version   Visualization version   GIF version

Theorem grpprop 18862
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
grpprop.b (Base‘𝐾) = (Base‘𝐿)
grpprop.p (+g𝐾) = (+g𝐿)
Assertion
Ref Expression
grpprop (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)

Proof of Theorem grpprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐾))
2 grpprop.b . . . 4 (Base‘𝐾) = (Base‘𝐿)
32a1i 11 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐿))
4 grpprop.p . . . . 5 (+g𝐾) = (+g𝐿)
54oveqi 7359 . . . 4 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
65a1i 11 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
71, 3, 6grppropd 18861 . 2 (⊤ → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
87mptru 1548 1 (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  Grpcgrp 18843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846
This theorem is referenced by:  grppropstr  18863  grpss  18864  opprsubg  20268  rmodislmod  20861  opprgrpb  42544  lmod1  48523
  Copyright terms: Public domain W3C validator