![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpprop | Structured version Visualization version GIF version |
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
grpprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
grpprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
Ref | Expression |
---|---|
grpprop | ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2733 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
2 | grpprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
4 | grpprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
5 | 4 | oveqi 7421 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
6 | 5 | a1i 11 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
7 | 1, 3, 6 | grppropd 18836 | . 2 ⊢ (⊤ → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
8 | 7 | mptru 1548 | 1 ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 Grpcgrp 18818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 |
This theorem is referenced by: grppropstr 18838 grpss 18839 opprring 20160 opprsubg 20165 rmodislmod 20539 rmodislmodOLD 20540 lmod1 47163 |
Copyright terms: Public domain | W3C validator |