| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpprop | Structured version Visualization version GIF version | ||
| Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| grpprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
| grpprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
| Ref | Expression |
|---|---|
| grpprop | ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2736 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
| 2 | grpprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
| 4 | grpprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
| 5 | 4 | oveqi 7418 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 7 | 1, 3, 6 | grppropd 18934 | . 2 ⊢ (⊤ → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
| 8 | 7 | mptru 1547 | 1 ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Grpcgrp 18916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 |
| This theorem is referenced by: grppropstr 18936 grpss 18937 opprsubg 20312 rmodislmod 20887 opprgrpb 42535 lmod1 48468 |
| Copyright terms: Public domain | W3C validator |