![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprsubg | Structured version Visualization version GIF version |
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprsubg | ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
2 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | opprbas 20064 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
4 | eqid 2733 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | 1, 4 | oppradd 20066 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑂) |
6 | 3, 5 | grpprop 18774 | . . . 4 ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) |
7 | biid 261 | . . . 4 ⊢ (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑅)) | |
8 | eqid 2733 | . . . . . . . 8 ⊢ (𝑅 ↾s 𝑥) = (𝑅 ↾s 𝑥) | |
9 | 8, 2 | ressbas 17126 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅 ↾s 𝑥))) |
10 | 9 | elv 3453 | . . . . . 6 ⊢ (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅 ↾s 𝑥)) |
11 | eqid 2733 | . . . . . . . 8 ⊢ (𝑂 ↾s 𝑥) = (𝑂 ↾s 𝑥) | |
12 | 11, 3 | ressbas 17126 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂 ↾s 𝑥))) |
13 | 12 | elv 3453 | . . . . . 6 ⊢ (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂 ↾s 𝑥)) |
14 | 10, 13 | eqtr3i 2763 | . . . . 5 ⊢ (Base‘(𝑅 ↾s 𝑥)) = (Base‘(𝑂 ↾s 𝑥)) |
15 | 8, 4 | ressplusg 17179 | . . . . . . 7 ⊢ (𝑥 ∈ V → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝑥))) |
16 | 11, 5 | ressplusg 17179 | . . . . . . 7 ⊢ (𝑥 ∈ V → (+g‘𝑅) = (+g‘(𝑂 ↾s 𝑥))) |
17 | 15, 16 | eqtr3d 2775 | . . . . . 6 ⊢ (𝑥 ∈ V → (+g‘(𝑅 ↾s 𝑥)) = (+g‘(𝑂 ↾s 𝑥))) |
18 | 17 | elv 3453 | . . . . 5 ⊢ (+g‘(𝑅 ↾s 𝑥)) = (+g‘(𝑂 ↾s 𝑥)) |
19 | 14, 18 | grpprop 18774 | . . . 4 ⊢ ((𝑅 ↾s 𝑥) ∈ Grp ↔ (𝑂 ↾s 𝑥) ∈ Grp) |
20 | 6, 7, 19 | 3anbi123i 1156 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp)) |
21 | 2 | issubg 18936 | . . 3 ⊢ (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp)) |
22 | 3 | issubg 18936 | . . 3 ⊢ (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp)) |
23 | 20, 21, 22 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)) |
24 | 23 | eqriv 2730 | 1 ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ‘cfv 6500 (class class class)co 7361 Basecbs 17091 ↾s cress 17120 +gcplusg 17141 Grpcgrp 18756 SubGrpcsubg 18930 opprcoppr 20056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-2nd 7926 df-tpos 8161 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-3 12225 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-mulr 17155 df-0g 17331 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-grp 18759 df-subg 18933 df-oppr 20057 |
This theorem is referenced by: opprsubrg 20285 |
Copyright terms: Public domain | W3C validator |