![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprsubg | Structured version Visualization version GIF version |
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprsubg | ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
2 | eqid 2799 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | opprbas 18945 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
4 | eqid 2799 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | 1, 4 | oppradd 18946 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑂) |
6 | 3, 5 | grpprop 17754 | . . . 4 ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) |
7 | biid 253 | . . . 4 ⊢ (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑅)) | |
8 | vex 3388 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
9 | eqid 2799 | . . . . . . . 8 ⊢ (𝑅 ↾s 𝑥) = (𝑅 ↾s 𝑥) | |
10 | 9, 2 | ressbas 16255 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅 ↾s 𝑥))) |
11 | 8, 10 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅 ↾s 𝑥)) |
12 | eqid 2799 | . . . . . . . 8 ⊢ (𝑂 ↾s 𝑥) = (𝑂 ↾s 𝑥) | |
13 | 12, 3 | ressbas 16255 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂 ↾s 𝑥))) |
14 | 8, 13 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂 ↾s 𝑥)) |
15 | 11, 14 | eqtr3i 2823 | . . . . 5 ⊢ (Base‘(𝑅 ↾s 𝑥)) = (Base‘(𝑂 ↾s 𝑥)) |
16 | 9, 4 | ressplusg 16314 | . . . . . . 7 ⊢ (𝑥 ∈ V → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝑥))) |
17 | 12, 5 | ressplusg 16314 | . . . . . . 7 ⊢ (𝑥 ∈ V → (+g‘𝑅) = (+g‘(𝑂 ↾s 𝑥))) |
18 | 16, 17 | eqtr3d 2835 | . . . . . 6 ⊢ (𝑥 ∈ V → (+g‘(𝑅 ↾s 𝑥)) = (+g‘(𝑂 ↾s 𝑥))) |
19 | 8, 18 | ax-mp 5 | . . . . 5 ⊢ (+g‘(𝑅 ↾s 𝑥)) = (+g‘(𝑂 ↾s 𝑥)) |
20 | 15, 19 | grpprop 17754 | . . . 4 ⊢ ((𝑅 ↾s 𝑥) ∈ Grp ↔ (𝑂 ↾s 𝑥) ∈ Grp) |
21 | 6, 7, 20 | 3anbi123i 1195 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp)) |
22 | 2 | issubg 17907 | . . 3 ⊢ (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp)) |
23 | 3 | issubg 17907 | . . 3 ⊢ (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp)) |
24 | 21, 22, 23 | 3bitr4i 295 | . 2 ⊢ (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)) |
25 | 24 | eqriv 2796 | 1 ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∩ cin 3768 ⊆ wss 3769 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 ↾s cress 16185 +gcplusg 16267 Grpcgrp 17738 SubGrpcsubg 17901 opprcoppr 18938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-tpos 7590 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-subg 17904 df-oppr 18939 |
This theorem is referenced by: opprsubrg 19119 |
Copyright terms: Public domain | W3C validator |