![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprsubg | Structured version Visualization version GIF version |
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprsubg | ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
2 | eqid 2728 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | opprbas 20280 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
4 | eqid 2728 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | 1, 4 | oppradd 20282 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑂) |
6 | 3, 5 | grpprop 18909 | . . . 4 ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) |
7 | biid 261 | . . . 4 ⊢ (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑅)) | |
8 | eqid 2728 | . . . . . . . 8 ⊢ (𝑅 ↾s 𝑥) = (𝑅 ↾s 𝑥) | |
9 | 8, 2 | ressbas 17215 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅 ↾s 𝑥))) |
10 | 9 | elv 3477 | . . . . . 6 ⊢ (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅 ↾s 𝑥)) |
11 | eqid 2728 | . . . . . . . 8 ⊢ (𝑂 ↾s 𝑥) = (𝑂 ↾s 𝑥) | |
12 | 11, 3 | ressbas 17215 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂 ↾s 𝑥))) |
13 | 12 | elv 3477 | . . . . . 6 ⊢ (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂 ↾s 𝑥)) |
14 | 10, 13 | eqtr3i 2758 | . . . . 5 ⊢ (Base‘(𝑅 ↾s 𝑥)) = (Base‘(𝑂 ↾s 𝑥)) |
15 | 8, 4 | ressplusg 17271 | . . . . . . 7 ⊢ (𝑥 ∈ V → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝑥))) |
16 | 11, 5 | ressplusg 17271 | . . . . . . 7 ⊢ (𝑥 ∈ V → (+g‘𝑅) = (+g‘(𝑂 ↾s 𝑥))) |
17 | 15, 16 | eqtr3d 2770 | . . . . . 6 ⊢ (𝑥 ∈ V → (+g‘(𝑅 ↾s 𝑥)) = (+g‘(𝑂 ↾s 𝑥))) |
18 | 17 | elv 3477 | . . . . 5 ⊢ (+g‘(𝑅 ↾s 𝑥)) = (+g‘(𝑂 ↾s 𝑥)) |
19 | 14, 18 | grpprop 18909 | . . . 4 ⊢ ((𝑅 ↾s 𝑥) ∈ Grp ↔ (𝑂 ↾s 𝑥) ∈ Grp) |
20 | 6, 7, 19 | 3anbi123i 1153 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp)) |
21 | 2 | issubg 19081 | . . 3 ⊢ (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp)) |
22 | 3 | issubg 19081 | . . 3 ⊢ (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp)) |
23 | 20, 21, 22 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)) |
24 | 23 | eqriv 2725 | 1 ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∩ cin 3946 ⊆ wss 3947 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 ↾s cress 17209 +gcplusg 17233 Grpcgrp 18890 SubGrpcsubg 19075 opprcoppr 20272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-subg 19078 df-oppr 20273 |
This theorem is referenced by: opprsubrng 20496 opprsubrg 20532 isridlrng 21115 isridl 21146 opprnsg 33208 |
Copyright terms: Public domain | W3C validator |