MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprsubg Structured version   Visualization version   GIF version

Theorem opprsubg 20291
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubg (SubGrp‘𝑅) = (SubGrp‘𝑂)

Proof of Theorem opprsubg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
2 eqid 2728 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbas 20280 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
4 eqid 2728 . . . . . 6 (+g𝑅) = (+g𝑅)
51, 4oppradd 20282 . . . . 5 (+g𝑅) = (+g𝑂)
63, 5grpprop 18909 . . . 4 (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)
7 biid 261 . . . 4 (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑅))
8 eqid 2728 . . . . . . . 8 (𝑅s 𝑥) = (𝑅s 𝑥)
98, 2ressbas 17215 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥)))
109elv 3477 . . . . . 6 (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥))
11 eqid 2728 . . . . . . . 8 (𝑂s 𝑥) = (𝑂s 𝑥)
1211, 3ressbas 17215 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥)))
1312elv 3477 . . . . . 6 (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥))
1410, 13eqtr3i 2758 . . . . 5 (Base‘(𝑅s 𝑥)) = (Base‘(𝑂s 𝑥))
158, 4ressplusg 17271 . . . . . . 7 (𝑥 ∈ V → (+g𝑅) = (+g‘(𝑅s 𝑥)))
1611, 5ressplusg 17271 . . . . . . 7 (𝑥 ∈ V → (+g𝑅) = (+g‘(𝑂s 𝑥)))
1715, 16eqtr3d 2770 . . . . . 6 (𝑥 ∈ V → (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥)))
1817elv 3477 . . . . 5 (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥))
1914, 18grpprop 18909 . . . 4 ((𝑅s 𝑥) ∈ Grp ↔ (𝑂s 𝑥) ∈ Grp)
206, 7, 193anbi123i 1153 . . 3 ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp))
212issubg 19081 . . 3 (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp))
223issubg 19081 . . 3 (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp))
2320, 21, 223bitr4i 303 . 2 (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))
2423eqriv 2725 1 (SubGrp‘𝑅) = (SubGrp‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3471  cin 3946  wss 3947  cfv 6548  (class class class)co 7420  Basecbs 17180  s cress 17209  +gcplusg 17233  Grpcgrp 18890  SubGrpcsubg 19075  opprcoppr 20272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-subg 19078  df-oppr 20273
This theorem is referenced by:  opprsubrng  20496  opprsubrg  20532  isridlrng  21115  isridl  21146  opprnsg  33208
  Copyright terms: Public domain W3C validator