MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprsubg Structured version   Visualization version   GIF version

Theorem opprsubg 19365
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubg (SubGrp‘𝑅) = (SubGrp‘𝑂)

Proof of Theorem opprsubg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
2 eqid 2820 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbas 19358 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
4 eqid 2820 . . . . . 6 (+g𝑅) = (+g𝑅)
51, 4oppradd 19359 . . . . 5 (+g𝑅) = (+g𝑂)
63, 5grpprop 18098 . . . 4 (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)
7 biid 263 . . . 4 (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑅))
8 eqid 2820 . . . . . . . 8 (𝑅s 𝑥) = (𝑅s 𝑥)
98, 2ressbas 16533 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥)))
109elv 3478 . . . . . 6 (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥))
11 eqid 2820 . . . . . . . 8 (𝑂s 𝑥) = (𝑂s 𝑥)
1211, 3ressbas 16533 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥)))
1312elv 3478 . . . . . 6 (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥))
1410, 13eqtr3i 2845 . . . . 5 (Base‘(𝑅s 𝑥)) = (Base‘(𝑂s 𝑥))
158, 4ressplusg 16591 . . . . . . 7 (𝑥 ∈ V → (+g𝑅) = (+g‘(𝑅s 𝑥)))
1611, 5ressplusg 16591 . . . . . . 7 (𝑥 ∈ V → (+g𝑅) = (+g‘(𝑂s 𝑥)))
1715, 16eqtr3d 2857 . . . . . 6 (𝑥 ∈ V → (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥)))
1817elv 3478 . . . . 5 (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥))
1914, 18grpprop 18098 . . . 4 ((𝑅s 𝑥) ∈ Grp ↔ (𝑂s 𝑥) ∈ Grp)
206, 7, 193anbi123i 1151 . . 3 ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp))
212issubg 18258 . . 3 (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp))
223issubg 18258 . . 3 (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp))
2320, 21, 223bitr4i 305 . 2 (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))
2423eqriv 2817 1 (SubGrp‘𝑅) = (SubGrp‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3473  cin 3912  wss 3913  cfv 6331  (class class class)co 7133  Basecbs 16462  s cress 16463  +gcplusg 16544  Grpcgrp 18082  SubGrpcsubg 18252  opprcoppr 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-tpos 7870  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-subg 18255  df-oppr 19352
This theorem is referenced by:  opprsubrg  19532
  Copyright terms: Public domain W3C validator