MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprsubg Structured version   Visualization version   GIF version

Theorem opprsubg 20237
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubg (SubGrp‘𝑅) = (SubGrp‘𝑂)

Proof of Theorem opprsubg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
2 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbas 20228 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
4 eqid 2729 . . . . . 6 (+g𝑅) = (+g𝑅)
51, 4oppradd 20229 . . . . 5 (+g𝑅) = (+g𝑂)
63, 5grpprop 18831 . . . 4 (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)
7 biid 261 . . . 4 (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑅))
8 eqid 2729 . . . . . . . 8 (𝑅s 𝑥) = (𝑅s 𝑥)
98, 2ressbas 17147 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥)))
109elv 3441 . . . . . 6 (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥))
11 eqid 2729 . . . . . . . 8 (𝑂s 𝑥) = (𝑂s 𝑥)
1211, 3ressbas 17147 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥)))
1312elv 3441 . . . . . 6 (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥))
1410, 13eqtr3i 2754 . . . . 5 (Base‘(𝑅s 𝑥)) = (Base‘(𝑂s 𝑥))
158, 4ressplusg 17195 . . . . . . 7 (𝑥 ∈ V → (+g𝑅) = (+g‘(𝑅s 𝑥)))
1611, 5ressplusg 17195 . . . . . . 7 (𝑥 ∈ V → (+g𝑅) = (+g‘(𝑂s 𝑥)))
1715, 16eqtr3d 2766 . . . . . 6 (𝑥 ∈ V → (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥)))
1817elv 3441 . . . . 5 (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥))
1914, 18grpprop 18831 . . . 4 ((𝑅s 𝑥) ∈ Grp ↔ (𝑂s 𝑥) ∈ Grp)
206, 7, 193anbi123i 1155 . . 3 ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp))
212issubg 19005 . . 3 (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp))
223issubg 19005 . . 3 (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp))
2320, 21, 223bitr4i 303 . 2 (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))
2423eqriv 2726 1 (SubGrp‘𝑅) = (SubGrp‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  wss 3903  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  +gcplusg 17161  Grpcgrp 18812  SubGrpcsubg 18999  opprcoppr 20221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-subg 19002  df-oppr 20222
This theorem is referenced by:  opprsubrng  20444  opprsubrg  20478  isridlrng  21126  isridl  21159  opprnsg  33422
  Copyright terms: Public domain W3C validator