| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarw | Structured version Visualization version GIF version | ||
| Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| arwhoma.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homarw | ⊢ (𝑋𝐻𝑌) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovssunirn 7423 | . 2 ⊢ (𝑋𝐻𝑌) ⊆ ∪ ran 𝐻 | |
| 2 | arwrcl.a | . . 3 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 3 | arwhoma.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
| 4 | 2, 3 | arwval 18005 | . 2 ⊢ 𝐴 = ∪ ran 𝐻 |
| 5 | 1, 4 | sseqtrri 3996 | 1 ⊢ (𝑋𝐻𝑌) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3914 ∪ cuni 4871 ran crn 5639 ‘cfv 6511 (class class class)co 7387 Arrowcarw 17984 Homachoma 17985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-homa 17988 df-arw 17989 |
| This theorem is referenced by: idaf 18025 homdmcoa 18029 coaval 18030 coapm 18033 termcarweu 49517 arweuthinc 49518 arweutermc 49519 |
| Copyright terms: Public domain | W3C validator |