MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarw Structured version   Visualization version   GIF version

Theorem homarw 18015
Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwhoma.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarw (𝑋𝐻𝑌) ⊆ 𝐴

Proof of Theorem homarw
StepHypRef Expression
1 ovssunirn 7426 . 2 (𝑋𝐻𝑌) ⊆ ran 𝐻
2 arwrcl.a . . 3 𝐴 = (Arrow‘𝐶)
3 arwhoma.h . . 3 𝐻 = (Homa𝐶)
42, 3arwval 18012 . 2 𝐴 = ran 𝐻
51, 4sseqtrri 3999 1 (𝑋𝐻𝑌) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3917   cuni 4874  ran crn 5642  cfv 6514  (class class class)co 7390  Arrowcarw 17991  Homachoma 17992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-homa 17995  df-arw 17996
This theorem is referenced by:  idaf  18032  homdmcoa  18036  coaval  18037  coapm  18040  termcarweu  49521  arweuthinc  49522  arweutermc  49523
  Copyright terms: Public domain W3C validator