| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarw | Structured version Visualization version GIF version | ||
| Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| arwhoma.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homarw | ⊢ (𝑋𝐻𝑌) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovssunirn 7426 | . 2 ⊢ (𝑋𝐻𝑌) ⊆ ∪ ran 𝐻 | |
| 2 | arwrcl.a | . . 3 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 3 | arwhoma.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
| 4 | 2, 3 | arwval 18012 | . 2 ⊢ 𝐴 = ∪ ran 𝐻 |
| 5 | 1, 4 | sseqtrri 3999 | 1 ⊢ (𝑋𝐻𝑌) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 ∪ cuni 4874 ran crn 5642 ‘cfv 6514 (class class class)co 7390 Arrowcarw 17991 Homachoma 17992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-homa 17995 df-arw 17996 |
| This theorem is referenced by: idaf 18032 homdmcoa 18036 coaval 18037 coapm 18040 termcarweu 49521 arweuthinc 49522 arweutermc 49523 |
| Copyright terms: Public domain | W3C validator |