| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarw | Structured version Visualization version GIF version | ||
| Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| arwhoma.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homarw | ⊢ (𝑋𝐻𝑌) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovssunirn 7382 | . 2 ⊢ (𝑋𝐻𝑌) ⊆ ∪ ran 𝐻 | |
| 2 | arwrcl.a | . . 3 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 3 | arwhoma.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
| 4 | 2, 3 | arwval 17947 | . 2 ⊢ 𝐴 = ∪ ran 𝐻 |
| 5 | 1, 4 | sseqtrri 3984 | 1 ⊢ (𝑋𝐻𝑌) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3902 ∪ cuni 4859 ran crn 5617 ‘cfv 6481 (class class class)co 7346 Arrowcarw 17926 Homachoma 17927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-homa 17930 df-arw 17931 |
| This theorem is referenced by: idaf 17967 homdmcoa 17971 coaval 17972 coapm 17975 termcarweu 49559 arweuthinc 49560 arweutermc 49561 |
| Copyright terms: Public domain | W3C validator |