MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarw Structured version   Visualization version   GIF version

Theorem homarw 17955
Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwhoma.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarw (𝑋𝐻𝑌) ⊆ 𝐴

Proof of Theorem homarw
StepHypRef Expression
1 ovssunirn 7388 . 2 (𝑋𝐻𝑌) ⊆ ran 𝐻
2 arwrcl.a . . 3 𝐴 = (Arrow‘𝐶)
3 arwhoma.h . . 3 𝐻 = (Homa𝐶)
42, 3arwval 17952 . 2 𝐴 = ran 𝐻
51, 4sseqtrri 3980 1 (𝑋𝐻𝑌) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3898   cuni 4858  ran crn 5620  cfv 6486  (class class class)co 7352  Arrowcarw 17931  Homachoma 17932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-homa 17935  df-arw 17936
This theorem is referenced by:  idaf  17972  homdmcoa  17976  coaval  17977  coapm  17980  termcarweu  49653  arweuthinc  49654  arweutermc  49655
  Copyright terms: Public domain W3C validator