MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarw Structured version   Visualization version   GIF version

Theorem homarw 17971
Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwhoma.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarw (𝑋𝐻𝑌) ⊆ 𝐴

Proof of Theorem homarw
StepHypRef Expression
1 ovssunirn 7389 . 2 (𝑋𝐻𝑌) ⊆ ran 𝐻
2 arwrcl.a . . 3 𝐴 = (Arrow‘𝐶)
3 arwhoma.h . . 3 𝐻 = (Homa𝐶)
42, 3arwval 17968 . 2 𝐴 = ran 𝐻
51, 4sseqtrri 3987 1 (𝑋𝐻𝑌) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3905   cuni 4861  ran crn 5624  cfv 6486  (class class class)co 7353  Arrowcarw 17947  Homachoma 17948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-homa 17951  df-arw 17952
This theorem is referenced by:  idaf  17988  homdmcoa  17992  coaval  17993  coapm  17996  termcarweu  49514  arweuthinc  49515  arweutermc  49516
  Copyright terms: Public domain W3C validator