Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homdmcoa | Structured version Visualization version GIF version |
Description: If 𝐹:𝑋⟶𝑌 and 𝐺:𝑌⟶𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homdmcoa.o | ⊢ · = (compa‘𝐶) |
homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
homdmcoa | ⊢ (𝜑 → 𝐺dom · 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Arrow‘𝐶) = (Arrow‘𝐶) | |
2 | homdmcoa.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | 1, 2 | homarw 17761 | . . 3 ⊢ (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶) |
4 | homdmcoa.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
5 | 3, 4 | sselid 3919 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Arrow‘𝐶)) |
6 | 1, 2 | homarw 17761 | . . 3 ⊢ (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶) |
7 | homdmcoa.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
8 | 6, 7 | sselid 3919 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Arrow‘𝐶)) |
9 | 2 | homacd 17756 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → (coda‘𝐹) = 𝑌) |
11 | 2 | homadm 17755 | . . . 4 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (doma‘𝐺) = 𝑌) |
12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (doma‘𝐺) = 𝑌) |
13 | 10, 12 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (coda‘𝐹) = (doma‘𝐺)) |
14 | homdmcoa.o | . . 3 ⊢ · = (compa‘𝐶) | |
15 | 14, 1 | eldmcoa 17780 | . 2 ⊢ (𝐺dom · 𝐹 ↔ (𝐹 ∈ (Arrow‘𝐶) ∧ 𝐺 ∈ (Arrow‘𝐶) ∧ (coda‘𝐹) = (doma‘𝐺))) |
16 | 5, 8, 13, 15 | syl3anbrc 1342 | 1 ⊢ (𝜑 → 𝐺dom · 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 domacdoma 17735 codaccoda 17736 Arrowcarw 17737 Homachoma 17738 compaccoa 17769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-doma 17739 df-coda 17740 df-homa 17741 df-arw 17742 df-coa 17771 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |