MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homdmcoa Structured version   Visualization version   GIF version

Theorem homdmcoa 17330
Description: If 𝐹:𝑋𝑌 and 𝐺:𝑌𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o · = (compa𝐶)
homdmcoa.h 𝐻 = (Homa𝐶)
homdmcoa.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
homdmcoa.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
homdmcoa (𝜑𝐺dom · 𝐹)

Proof of Theorem homdmcoa
StepHypRef Expression
1 eqid 2824 . . . 4 (Arrow‘𝐶) = (Arrow‘𝐶)
2 homdmcoa.h . . . 4 𝐻 = (Homa𝐶)
31, 2homarw 17309 . . 3 (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶)
4 homdmcoa.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
53, 4sseldi 3952 . 2 (𝜑𝐹 ∈ (Arrow‘𝐶))
61, 2homarw 17309 . . 3 (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶)
7 homdmcoa.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
86, 7sseldi 3952 . 2 (𝜑𝐺 ∈ (Arrow‘𝐶))
92homacd 17304 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
104, 9syl 17 . . 3 (𝜑 → (coda𝐹) = 𝑌)
112homadm 17303 . . . 4 (𝐺 ∈ (𝑌𝐻𝑍) → (doma𝐺) = 𝑌)
127, 11syl 17 . . 3 (𝜑 → (doma𝐺) = 𝑌)
1310, 12eqtr4d 2862 . 2 (𝜑 → (coda𝐹) = (doma𝐺))
14 homdmcoa.o . . 3 · = (compa𝐶)
1514, 1eldmcoa 17328 . 2 (𝐺dom · 𝐹 ↔ (𝐹 ∈ (Arrow‘𝐶) ∧ 𝐺 ∈ (Arrow‘𝐶) ∧ (coda𝐹) = (doma𝐺)))
165, 8, 13, 15syl3anbrc 1340 1 (𝜑𝐺dom · 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115   class class class wbr 5053  dom cdm 5543  cfv 6344  (class class class)co 7150  domacdoma 17283  codaccoda 17284  Arrowcarw 17285  Homachoma 17286  compaccoa 17317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-op 4558  df-ot 4560  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-doma 17287  df-coda 17288  df-homa 17289  df-arw 17290  df-coa 17319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator