| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homdmcoa | Structured version Visualization version GIF version | ||
| Description: If 𝐹:𝑋⟶𝑌 and 𝐺:𝑌⟶𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homdmcoa.o | ⊢ · = (compa‘𝐶) |
| homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| homdmcoa | ⊢ (𝜑 → 𝐺dom · 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (Arrow‘𝐶) = (Arrow‘𝐶) | |
| 2 | homdmcoa.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | 1, 2 | homarw 18091 | . . 3 ⊢ (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶) |
| 4 | homdmcoa.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 5 | 3, 4 | sselid 3981 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Arrow‘𝐶)) |
| 6 | 1, 2 | homarw 18091 | . . 3 ⊢ (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶) |
| 7 | homdmcoa.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 8 | 6, 7 | sselid 3981 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Arrow‘𝐶)) |
| 9 | 2 | homacd 18086 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
| 10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → (coda‘𝐹) = 𝑌) |
| 11 | 2 | homadm 18085 | . . . 4 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (doma‘𝐺) = 𝑌) |
| 12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (doma‘𝐺) = 𝑌) |
| 13 | 10, 12 | eqtr4d 2780 | . 2 ⊢ (𝜑 → (coda‘𝐹) = (doma‘𝐺)) |
| 14 | homdmcoa.o | . . 3 ⊢ · = (compa‘𝐶) | |
| 15 | 14, 1 | eldmcoa 18110 | . 2 ⊢ (𝐺dom · 𝐹 ↔ (𝐹 ∈ (Arrow‘𝐶) ∧ 𝐺 ∈ (Arrow‘𝐶) ∧ (coda‘𝐹) = (doma‘𝐺))) |
| 16 | 5, 8, 13, 15 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝐺dom · 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 dom cdm 5685 ‘cfv 6561 (class class class)co 7431 domacdoma 18065 codaccoda 18066 Arrowcarw 18067 Homachoma 18068 compaccoa 18099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-ot 4635 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-doma 18069 df-coda 18070 df-homa 18071 df-arw 18072 df-coa 18101 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |