MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homdmcoa Structured version   Visualization version   GIF version

Theorem homdmcoa 18134
Description: If 𝐹:𝑋𝑌 and 𝐺:𝑌𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o · = (compa𝐶)
homdmcoa.h 𝐻 = (Homa𝐶)
homdmcoa.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
homdmcoa.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
homdmcoa (𝜑𝐺dom · 𝐹)

Proof of Theorem homdmcoa
StepHypRef Expression
1 eqid 2740 . . . 4 (Arrow‘𝐶) = (Arrow‘𝐶)
2 homdmcoa.h . . . 4 𝐻 = (Homa𝐶)
31, 2homarw 18113 . . 3 (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶)
4 homdmcoa.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
53, 4sselid 4006 . 2 (𝜑𝐹 ∈ (Arrow‘𝐶))
61, 2homarw 18113 . . 3 (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶)
7 homdmcoa.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
86, 7sselid 4006 . 2 (𝜑𝐺 ∈ (Arrow‘𝐶))
92homacd 18108 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
104, 9syl 17 . . 3 (𝜑 → (coda𝐹) = 𝑌)
112homadm 18107 . . . 4 (𝐺 ∈ (𝑌𝐻𝑍) → (doma𝐺) = 𝑌)
127, 11syl 17 . . 3 (𝜑 → (doma𝐺) = 𝑌)
1310, 12eqtr4d 2783 . 2 (𝜑 → (coda𝐹) = (doma𝐺))
14 homdmcoa.o . . 3 · = (compa𝐶)
1514, 1eldmcoa 18132 . 2 (𝐺dom · 𝐹 ↔ (𝐹 ∈ (Arrow‘𝐶) ∧ 𝐺 ∈ (Arrow‘𝐶) ∧ (coda𝐹) = (doma𝐺)))
165, 8, 13, 15syl3anbrc 1343 1 (𝜑𝐺dom · 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448  domacdoma 18087  codaccoda 18088  Arrowcarw 18089  Homachoma 18090  compaccoa 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-doma 18091  df-coda 18092  df-homa 18093  df-arw 18094  df-coa 18123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator