| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homdmcoa | Structured version Visualization version GIF version | ||
| Description: If 𝐹:𝑋⟶𝑌 and 𝐺:𝑌⟶𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homdmcoa.o | ⊢ · = (compa‘𝐶) |
| homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| homdmcoa | ⊢ (𝜑 → 𝐺dom · 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Arrow‘𝐶) = (Arrow‘𝐶) | |
| 2 | homdmcoa.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | 1, 2 | homarw 17953 | . . 3 ⊢ (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶) |
| 4 | homdmcoa.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 5 | 3, 4 | sselid 3933 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Arrow‘𝐶)) |
| 6 | 1, 2 | homarw 17953 | . . 3 ⊢ (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶) |
| 7 | homdmcoa.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 8 | 6, 7 | sselid 3933 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Arrow‘𝐶)) |
| 9 | 2 | homacd 17948 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
| 10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → (coda‘𝐹) = 𝑌) |
| 11 | 2 | homadm 17947 | . . . 4 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (doma‘𝐺) = 𝑌) |
| 12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (doma‘𝐺) = 𝑌) |
| 13 | 10, 12 | eqtr4d 2767 | . 2 ⊢ (𝜑 → (coda‘𝐹) = (doma‘𝐺)) |
| 14 | homdmcoa.o | . . 3 ⊢ · = (compa‘𝐶) | |
| 15 | 14, 1 | eldmcoa 17972 | . 2 ⊢ (𝐺dom · 𝐹 ↔ (𝐹 ∈ (Arrow‘𝐶) ∧ 𝐺 ∈ (Arrow‘𝐶) ∧ (coda‘𝐹) = (doma‘𝐺))) |
| 16 | 5, 8, 13, 15 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝐺dom · 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 domacdoma 17927 codaccoda 17928 Arrowcarw 17929 Homachoma 17930 compaccoa 17961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-doma 17931 df-coda 17932 df-homa 17933 df-arw 17934 df-coa 17963 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |