Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homdmcoa | Structured version Visualization version GIF version |
Description: If 𝐹:𝑋⟶𝑌 and 𝐺:𝑌⟶𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homdmcoa.o | ⊢ · = (compa‘𝐶) |
homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
homdmcoa | ⊢ (𝜑 → 𝐺dom · 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Arrow‘𝐶) = (Arrow‘𝐶) | |
2 | homdmcoa.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | 1, 2 | homarw 17757 | . . 3 ⊢ (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶) |
4 | homdmcoa.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
5 | 3, 4 | sselid 3924 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Arrow‘𝐶)) |
6 | 1, 2 | homarw 17757 | . . 3 ⊢ (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶) |
7 | homdmcoa.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
8 | 6, 7 | sselid 3924 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Arrow‘𝐶)) |
9 | 2 | homacd 17752 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → (coda‘𝐹) = 𝑌) |
11 | 2 | homadm 17751 | . . . 4 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (doma‘𝐺) = 𝑌) |
12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (doma‘𝐺) = 𝑌) |
13 | 10, 12 | eqtr4d 2783 | . 2 ⊢ (𝜑 → (coda‘𝐹) = (doma‘𝐺)) |
14 | homdmcoa.o | . . 3 ⊢ · = (compa‘𝐶) | |
15 | 14, 1 | eldmcoa 17776 | . 2 ⊢ (𝐺dom · 𝐹 ↔ (𝐹 ∈ (Arrow‘𝐶) ∧ 𝐺 ∈ (Arrow‘𝐶) ∧ (coda‘𝐹) = (doma‘𝐺))) |
16 | 5, 8, 13, 15 | syl3anbrc 1342 | 1 ⊢ (𝜑 → 𝐺dom · 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 dom cdm 5589 ‘cfv 6431 (class class class)co 7269 domacdoma 17731 codaccoda 17732 Arrowcarw 17733 Homachoma 17734 compaccoa 17765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-ot 4576 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-doma 17735 df-coda 17736 df-homa 17737 df-arw 17738 df-coa 17767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |