![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > arwdm | Structured version Visualization version GIF version |
Description: The domain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwdm.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
arwdm | ⊢ (𝐹 ∈ 𝐴 → (doma‘𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | . . . 4 ⊢ 𝐴 = (Arrow‘𝐶) | |
2 | eqid 2825 | . . . 4 ⊢ (Homa‘𝐶) = (Homa‘𝐶) | |
3 | 1, 2 | arwhoma 17054 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ((doma‘𝐹)(Homa‘𝐶)(coda‘𝐹))) |
4 | arwdm.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 2, 4 | homarcl2 17044 | . . 3 ⊢ (𝐹 ∈ ((doma‘𝐹)(Homa‘𝐶)(coda‘𝐹)) → ((doma‘𝐹) ∈ 𝐵 ∧ (coda‘𝐹) ∈ 𝐵)) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐴 → ((doma‘𝐹) ∈ 𝐵 ∧ (coda‘𝐹) ∈ 𝐵)) |
7 | 6 | simpld 490 | 1 ⊢ (𝐹 ∈ 𝐴 → (doma‘𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 domacdoma 17029 codaccoda 17030 Arrowcarw 17031 Homachoma 17032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-1st 7433 df-2nd 7434 df-doma 17033 df-coda 17034 df-homa 17035 df-arw 17036 |
This theorem is referenced by: dmaf 17058 |
Copyright terms: Public domain | W3C validator |