MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwdm Structured version   Visualization version   GIF version

Theorem arwdm 16904
Description: The domain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
arwdm (𝐹𝐴 → (doma𝐹) ∈ 𝐵)

Proof of Theorem arwdm
StepHypRef Expression
1 arwrcl.a . . . 4 𝐴 = (Arrow‘𝐶)
2 eqid 2771 . . . 4 (Homa𝐶) = (Homa𝐶)
31, 2arwhoma 16902 . . 3 (𝐹𝐴𝐹 ∈ ((doma𝐹)(Homa𝐶)(coda𝐹)))
4 arwdm.b . . . 4 𝐵 = (Base‘𝐶)
52, 4homarcl2 16892 . . 3 (𝐹 ∈ ((doma𝐹)(Homa𝐶)(coda𝐹)) → ((doma𝐹) ∈ 𝐵 ∧ (coda𝐹) ∈ 𝐵))
63, 5syl 17 . 2 (𝐹𝐴 → ((doma𝐹) ∈ 𝐵 ∧ (coda𝐹) ∈ 𝐵))
76simpld 482 1 (𝐹𝐴 → (doma𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6030  (class class class)co 6796  Basecbs 16064  domacdoma 16877  codaccoda 16878  Arrowcarw 16879  Homachoma 16880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-1st 7319  df-2nd 7320  df-doma 16881  df-coda 16882  df-homa 16883  df-arw 16884
This theorem is referenced by:  dmaf  16906
  Copyright terms: Public domain W3C validator