Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coapm Structured version   Visualization version   GIF version

Theorem coapm 17326
 Description: Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coapm.o · = (compa𝐶)
coapm.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
coapm · ∈ (𝐴pm (𝐴 × 𝐴))

Proof of Theorem coapm
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coapm.o . . . . . 6 · = (compa𝐶)
2 coapm.a . . . . . 6 𝐴 = (Arrow‘𝐶)
3 eqid 2826 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
41, 2, 3coafval 17319 . . . . 5 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩)
54mpofun 7270 . . . 4 Fun ·
6 funfn 6384 . . . 4 (Fun ·· Fn dom · )
75, 6mpbi 231 . . 3 · Fn dom ·
81, 2dmcoass 17321 . . . . . . . . 9 dom · ⊆ (𝐴 × 𝐴)
98sseli 3967 . . . . . . . 8 (𝑧 ∈ dom ·𝑧 ∈ (𝐴 × 𝐴))
10 1st2nd2 7724 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐴) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
119, 10syl 17 . . . . . . 7 (𝑧 ∈ dom ·𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1211fveq2d 6673 . . . . . 6 (𝑧 ∈ dom · → ( ·𝑧) = ( · ‘⟨(1st𝑧), (2nd𝑧)⟩))
13 df-ov 7153 . . . . . 6 ((1st𝑧) · (2nd𝑧)) = ( · ‘⟨(1st𝑧), (2nd𝑧)⟩)
1412, 13syl6eqr 2879 . . . . 5 (𝑧 ∈ dom · → ( ·𝑧) = ((1st𝑧) · (2nd𝑧)))
15 eqid 2826 . . . . . . 7 (Homa𝐶) = (Homa𝐶)
162, 15homarw 17301 . . . . . 6 ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(1st𝑧))) ⊆ 𝐴
17 id 22 . . . . . . . . . . . . 13 (𝑧 ∈ dom ·𝑧 ∈ dom · )
1811, 17eqeltrrd 2919 . . . . . . . . . . . 12 (𝑧 ∈ dom · → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom · )
19 df-br 5064 . . . . . . . . . . . 12 ((1st𝑧)dom · (2nd𝑧) ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom · )
2018, 19sylibr 235 . . . . . . . . . . 11 (𝑧 ∈ dom · → (1st𝑧)dom · (2nd𝑧))
211, 2eldmcoa 17320 . . . . . . . . . . 11 ((1st𝑧)dom · (2nd𝑧) ↔ ((2nd𝑧) ∈ 𝐴 ∧ (1st𝑧) ∈ 𝐴 ∧ (coda‘(2nd𝑧)) = (doma‘(1st𝑧))))
2220, 21sylib 219 . . . . . . . . . 10 (𝑧 ∈ dom · → ((2nd𝑧) ∈ 𝐴 ∧ (1st𝑧) ∈ 𝐴 ∧ (coda‘(2nd𝑧)) = (doma‘(1st𝑧))))
2322simp1d 1136 . . . . . . . . 9 (𝑧 ∈ dom · → (2nd𝑧) ∈ 𝐴)
242, 15arwhoma 17300 . . . . . . . . 9 ((2nd𝑧) ∈ 𝐴 → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))))
2523, 24syl 17 . . . . . . . 8 (𝑧 ∈ dom · → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))))
2622simp3d 1138 . . . . . . . . 9 (𝑧 ∈ dom · → (coda‘(2nd𝑧)) = (doma‘(1st𝑧)))
2726oveq2d 7166 . . . . . . . 8 (𝑧 ∈ dom · → ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))) = ((doma‘(2nd𝑧))(Homa𝐶)(doma‘(1st𝑧))))
2825, 27eleqtrd 2920 . . . . . . 7 (𝑧 ∈ dom · → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(doma‘(1st𝑧))))
2922simp2d 1137 . . . . . . . 8 (𝑧 ∈ dom · → (1st𝑧) ∈ 𝐴)
302, 15arwhoma 17300 . . . . . . . 8 ((1st𝑧) ∈ 𝐴 → (1st𝑧) ∈ ((doma‘(1st𝑧))(Homa𝐶)(coda‘(1st𝑧))))
3129, 30syl 17 . . . . . . 7 (𝑧 ∈ dom · → (1st𝑧) ∈ ((doma‘(1st𝑧))(Homa𝐶)(coda‘(1st𝑧))))
321, 15, 28, 31coahom 17325 . . . . . 6 (𝑧 ∈ dom · → ((1st𝑧) · (2nd𝑧)) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(1st𝑧))))
3316, 32sseldi 3969 . . . . 5 (𝑧 ∈ dom · → ((1st𝑧) · (2nd𝑧)) ∈ 𝐴)
3414, 33eqeltrd 2918 . . . 4 (𝑧 ∈ dom · → ( ·𝑧) ∈ 𝐴)
3534rgen 3153 . . 3 𝑧 ∈ dom · ( ·𝑧) ∈ 𝐴
36 ffnfv 6880 . . 3 ( · :dom ·𝐴 ↔ ( · Fn dom · ∧ ∀𝑧 ∈ dom · ( ·𝑧) ∈ 𝐴))
377, 35, 36mpbir2an 707 . 2 · :dom ·𝐴
382fvexi 6683 . . 3 𝐴 ∈ V
3938, 38xpex 7469 . . 3 (𝐴 × 𝐴) ∈ V
4038, 39elpm2 8433 . 2 ( · ∈ (𝐴pm (𝐴 × 𝐴)) ↔ ( · :dom ·𝐴 ∧ dom · ⊆ (𝐴 × 𝐴)))
4137, 8, 40mpbir2an 707 1 · ∈ (𝐴pm (𝐴 × 𝐴))
 Colors of variables: wff setvar class Syntax hints:   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ∀wral 3143  {crab 3147   ⊆ wss 3940  ⟨cop 4570  ⟨cotp 4572   class class class wbr 5063   × cxp 5552  dom cdm 5554  Fun wfun 6348   Fn wfn 6349  ⟶wf 6350  ‘cfv 6354  (class class class)co 7150  1st c1st 7683  2nd c2nd 7684   ↑pm cpm 8402  compcco 16572  domacdoma 17275  codaccoda 17276  Arrowcarw 17277  Homachoma 17278  compaccoa 17309 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-ot 4573  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-pm 8404  df-cat 16934  df-doma 17279  df-coda 17280  df-homa 17281  df-arw 17282  df-coa 17311 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator