MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coapm Structured version   Visualization version   GIF version

Theorem coapm 18138
Description: Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coapm.o · = (compa𝐶)
coapm.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
coapm · ∈ (𝐴pm (𝐴 × 𝐴))

Proof of Theorem coapm
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coapm.o . . . . . 6 · = (compa𝐶)
2 coapm.a . . . . . 6 𝐴 = (Arrow‘𝐶)
3 eqid 2740 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
41, 2, 3coafval 18131 . . . . 5 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩)
54mpofun 7574 . . . 4 Fun ·
6 funfn 6608 . . . 4 (Fun ·· Fn dom · )
75, 6mpbi 230 . . 3 · Fn dom ·
81, 2dmcoass 18133 . . . . . . . . 9 dom · ⊆ (𝐴 × 𝐴)
98sseli 4004 . . . . . . . 8 (𝑧 ∈ dom ·𝑧 ∈ (𝐴 × 𝐴))
10 1st2nd2 8069 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐴) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
119, 10syl 17 . . . . . . 7 (𝑧 ∈ dom ·𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1211fveq2d 6924 . . . . . 6 (𝑧 ∈ dom · → ( ·𝑧) = ( · ‘⟨(1st𝑧), (2nd𝑧)⟩))
13 df-ov 7451 . . . . . 6 ((1st𝑧) · (2nd𝑧)) = ( · ‘⟨(1st𝑧), (2nd𝑧)⟩)
1412, 13eqtr4di 2798 . . . . 5 (𝑧 ∈ dom · → ( ·𝑧) = ((1st𝑧) · (2nd𝑧)))
15 eqid 2740 . . . . . . 7 (Homa𝐶) = (Homa𝐶)
162, 15homarw 18113 . . . . . 6 ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(1st𝑧))) ⊆ 𝐴
17 id 22 . . . . . . . . . . . . 13 (𝑧 ∈ dom ·𝑧 ∈ dom · )
1811, 17eqeltrrd 2845 . . . . . . . . . . . 12 (𝑧 ∈ dom · → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom · )
19 df-br 5167 . . . . . . . . . . . 12 ((1st𝑧)dom · (2nd𝑧) ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom · )
2018, 19sylibr 234 . . . . . . . . . . 11 (𝑧 ∈ dom · → (1st𝑧)dom · (2nd𝑧))
211, 2eldmcoa 18132 . . . . . . . . . . 11 ((1st𝑧)dom · (2nd𝑧) ↔ ((2nd𝑧) ∈ 𝐴 ∧ (1st𝑧) ∈ 𝐴 ∧ (coda‘(2nd𝑧)) = (doma‘(1st𝑧))))
2220, 21sylib 218 . . . . . . . . . 10 (𝑧 ∈ dom · → ((2nd𝑧) ∈ 𝐴 ∧ (1st𝑧) ∈ 𝐴 ∧ (coda‘(2nd𝑧)) = (doma‘(1st𝑧))))
2322simp1d 1142 . . . . . . . . 9 (𝑧 ∈ dom · → (2nd𝑧) ∈ 𝐴)
242, 15arwhoma 18112 . . . . . . . . 9 ((2nd𝑧) ∈ 𝐴 → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))))
2523, 24syl 17 . . . . . . . 8 (𝑧 ∈ dom · → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))))
2622simp3d 1144 . . . . . . . . 9 (𝑧 ∈ dom · → (coda‘(2nd𝑧)) = (doma‘(1st𝑧)))
2726oveq2d 7464 . . . . . . . 8 (𝑧 ∈ dom · → ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))) = ((doma‘(2nd𝑧))(Homa𝐶)(doma‘(1st𝑧))))
2825, 27eleqtrd 2846 . . . . . . 7 (𝑧 ∈ dom · → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(doma‘(1st𝑧))))
2922simp2d 1143 . . . . . . . 8 (𝑧 ∈ dom · → (1st𝑧) ∈ 𝐴)
302, 15arwhoma 18112 . . . . . . . 8 ((1st𝑧) ∈ 𝐴 → (1st𝑧) ∈ ((doma‘(1st𝑧))(Homa𝐶)(coda‘(1st𝑧))))
3129, 30syl 17 . . . . . . 7 (𝑧 ∈ dom · → (1st𝑧) ∈ ((doma‘(1st𝑧))(Homa𝐶)(coda‘(1st𝑧))))
321, 15, 28, 31coahom 18137 . . . . . 6 (𝑧 ∈ dom · → ((1st𝑧) · (2nd𝑧)) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(1st𝑧))))
3316, 32sselid 4006 . . . . 5 (𝑧 ∈ dom · → ((1st𝑧) · (2nd𝑧)) ∈ 𝐴)
3414, 33eqeltrd 2844 . . . 4 (𝑧 ∈ dom · → ( ·𝑧) ∈ 𝐴)
3534rgen 3069 . . 3 𝑧 ∈ dom · ( ·𝑧) ∈ 𝐴
36 ffnfv 7153 . . 3 ( · :dom ·𝐴 ↔ ( · Fn dom · ∧ ∀𝑧 ∈ dom · ( ·𝑧) ∈ 𝐴))
377, 35, 36mpbir2an 710 . 2 · :dom ·𝐴
382fvexi 6934 . . 3 𝐴 ∈ V
3938, 38xpex 7788 . . 3 (𝐴 × 𝐴) ∈ V
4038, 39elpm2 8932 . 2 ( · ∈ (𝐴pm (𝐴 × 𝐴)) ↔ ( · :dom ·𝐴 ∧ dom · ⊆ (𝐴 × 𝐴)))
4137, 8, 40mpbir2an 710 1 · ∈ (𝐴pm (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976  cop 4654  cotp 4656   class class class wbr 5166   × cxp 5698  dom cdm 5700  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  pm cpm 8885  compcco 17323  domacdoma 18087  codaccoda 18088  Arrowcarw 18089  Homachoma 18090  compaccoa 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-pm 8887  df-cat 17726  df-doma 18091  df-coda 18092  df-homa 18093  df-arw 18094  df-coa 18123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator