| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgedg | Structured version Visualization version GIF version | ||
| Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| iedgedg.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| iedgedg | ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7048 | . 2 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ ran 𝐸) | |
| 2 | edgval 28976 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 3 | iedgedg.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 3 | rneqi 5901 | . . 3 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
| 5 | 2, 4 | eqtr4i 2755 | . 2 ⊢ (Edg‘𝐺) = ran 𝐸 |
| 6 | 1, 5 | eleqtrrdi 2839 | 1 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 dom cdm 5638 ran crn 5639 Fun wfun 6505 ‘cfv 6511 iEdgciedg 28924 Edgcedg 28974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-edg 28975 |
| This theorem is referenced by: edglnl 29070 numedglnl 29071 umgr2cycllem 35127 uhgrimedgi 47890 isuspgrim0lem 47893 isuspgrim0 47894 upgrimwlklem2 47898 upgrimwlklem3 47899 upgrimtrlslem1 47904 clnbgrgrimlem 47933 clnbgrgrim 47934 grimedg 47935 uspgrlimlem4 47990 |
| Copyright terms: Public domain | W3C validator |