| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgedg | Structured version Visualization version GIF version | ||
| Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| iedgedg.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| iedgedg | ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7096 | . 2 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ ran 𝐸) | |
| 2 | edgval 29066 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 3 | iedgedg.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 3 | rneqi 5948 | . . 3 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
| 5 | 2, 4 | eqtr4i 2768 | . 2 ⊢ (Edg‘𝐺) = ran 𝐸 |
| 6 | 1, 5 | eleqtrrdi 2852 | 1 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 dom cdm 5685 ran crn 5686 Fun wfun 6555 ‘cfv 6561 iEdgciedg 29014 Edgcedg 29064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 df-edg 29065 |
| This theorem is referenced by: edglnl 29160 numedglnl 29161 umgr2cycllem 35145 isuspgrim0lem 47871 isuspgrim0 47872 clnbgrgrimlem 47901 clnbgrgrim 47902 grimedg 47903 uspgrlimlem4 47958 |
| Copyright terms: Public domain | W3C validator |