MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgedg Structured version   Visualization version   GIF version

Theorem iedgedg 29030
Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.)
Hypothesis
Ref Expression
iedgedg.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
iedgedg ((Fun 𝐸𝐼 ∈ dom 𝐸) → (𝐸𝐼) ∈ (Edg‘𝐺))

Proof of Theorem iedgedg
StepHypRef Expression
1 fvelrn 7030 . 2 ((Fun 𝐸𝐼 ∈ dom 𝐸) → (𝐸𝐼) ∈ ran 𝐸)
2 edgval 29029 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
3 iedgedg.e . . . 4 𝐸 = (iEdg‘𝐺)
43rneqi 5890 . . 3 ran 𝐸 = ran (iEdg‘𝐺)
52, 4eqtr4i 2755 . 2 (Edg‘𝐺) = ran 𝐸
61, 5eleqtrrdi 2839 1 ((Fun 𝐸𝐼 ∈ dom 𝐸) → (𝐸𝐼) ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  dom cdm 5631  ran crn 5632  Fun wfun 6493  cfv 6499  iEdgciedg 28977  Edgcedg 29027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-edg 29028
This theorem is referenced by:  edglnl  29123  numedglnl  29124  umgr2cycllem  35120  uhgrimedgi  47883  isuspgrim0lem  47886  isuspgrim0  47887  upgrimwlklem2  47891  upgrimwlklem3  47892  upgrimtrlslem1  47897  clnbgrgrimlem  47926  clnbgrgrim  47927  grimedg  47928  uspgrlimlem4  47983
  Copyright terms: Public domain W3C validator