![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iedgedg | Structured version Visualization version GIF version |
Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.) |
Ref | Expression |
---|---|
iedgedg.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
iedgedg | ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrn 6602 | . 2 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ ran 𝐸) | |
2 | edgval 26348 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
3 | iedgedg.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | 3 | rneqi 5585 | . . 3 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
5 | 2, 4 | eqtr4i 2853 | . 2 ⊢ (Edg‘𝐺) = ran 𝐸 |
6 | 1, 5 | syl6eleqr 2918 | 1 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 dom cdm 5343 ran crn 5344 Fun wfun 6118 ‘cfv 6124 iEdgciedg 26296 Edgcedg 26346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-iota 6087 df-fun 6126 df-fn 6127 df-fv 6132 df-edg 26347 |
This theorem is referenced by: edglnl 26443 numedglnl 26444 |
Copyright terms: Public domain | W3C validator |