| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgedg | Structured version Visualization version GIF version | ||
| Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| iedgedg.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| iedgedg | ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7063 | . 2 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ ran 𝐸) | |
| 2 | edgval 28962 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 3 | iedgedg.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 3 | rneqi 5915 | . . 3 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
| 5 | 2, 4 | eqtr4i 2760 | . 2 ⊢ (Edg‘𝐺) = ran 𝐸 |
| 6 | 1, 5 | eleqtrrdi 2844 | 1 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 dom cdm 5652 ran crn 5653 Fun wfun 6522 ‘cfv 6528 iEdgciedg 28910 Edgcedg 28960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-iota 6481 df-fun 6530 df-fn 6531 df-fv 6536 df-edg 28961 |
| This theorem is referenced by: edglnl 29056 numedglnl 29057 umgr2cycllem 35091 isuspgrim0lem 47824 isuspgrim0 47825 clnbgrgrimlem 47854 clnbgrgrim 47855 grimedg 47856 uspgrlimlem4 47911 |
| Copyright terms: Public domain | W3C validator |