| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgedg | Structured version Visualization version GIF version | ||
| Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| iedgedg.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| iedgedg | ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7066 | . 2 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ ran 𝐸) | |
| 2 | edgval 29028 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 3 | iedgedg.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 3 | rneqi 5917 | . . 3 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
| 5 | 2, 4 | eqtr4i 2761 | . 2 ⊢ (Edg‘𝐺) = ran 𝐸 |
| 6 | 1, 5 | eleqtrrdi 2845 | 1 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 dom cdm 5654 ran crn 5655 Fun wfun 6525 ‘cfv 6531 iEdgciedg 28976 Edgcedg 29026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-edg 29027 |
| This theorem is referenced by: edglnl 29122 numedglnl 29123 umgr2cycllem 35162 uhgrimedgi 47903 isuspgrim0lem 47906 isuspgrim0 47907 upgrimwlklem2 47911 upgrimwlklem3 47912 upgrimtrlslem1 47917 clnbgrgrimlem 47946 clnbgrgrim 47947 grimedg 47948 uspgrlimlem4 48003 |
| Copyright terms: Public domain | W3C validator |