| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgedg | Structured version Visualization version GIF version | ||
| Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| iedgedg.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| iedgedg | ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7009 | . 2 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ ran 𝐸) | |
| 2 | edgval 29027 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 3 | iedgedg.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 3 | rneqi 5876 | . . 3 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
| 5 | 2, 4 | eqtr4i 2757 | . 2 ⊢ (Edg‘𝐺) = ran 𝐸 |
| 6 | 1, 5 | eleqtrrdi 2842 | 1 ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 dom cdm 5614 ran crn 5615 Fun wfun 6475 ‘cfv 6481 iEdgciedg 28975 Edgcedg 29025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-edg 29026 |
| This theorem is referenced by: edglnl 29121 numedglnl 29122 umgr2cycllem 35184 uhgrimedgi 48000 isuspgrim0lem 48003 isuspgrim0 48004 upgrimwlklem2 48008 upgrimwlklem3 48009 upgrimtrlslem1 48014 clnbgrgrimlem 48043 clnbgrgrim 48044 grimedg 48045 uspgrlimlem4 48101 |
| Copyright terms: Public domain | W3C validator |