MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgedg Structured version   Visualization version   GIF version

Theorem iedgedg 29085
Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.)
Hypothesis
Ref Expression
iedgedg.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
iedgedg ((Fun 𝐸𝐼 ∈ dom 𝐸) → (𝐸𝐼) ∈ (Edg‘𝐺))

Proof of Theorem iedgedg
StepHypRef Expression
1 fvelrn 7110 . 2 ((Fun 𝐸𝐼 ∈ dom 𝐸) → (𝐸𝐼) ∈ ran 𝐸)
2 edgval 29084 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
3 iedgedg.e . . . 4 𝐸 = (iEdg‘𝐺)
43rneqi 5962 . . 3 ran 𝐸 = ran (iEdg‘𝐺)
52, 4eqtr4i 2771 . 2 (Edg‘𝐺) = ran 𝐸
61, 5eleqtrrdi 2855 1 ((Fun 𝐸𝐼 ∈ dom 𝐸) → (𝐸𝐼) ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  dom cdm 5700  ran crn 5701  Fun wfun 6567  cfv 6573  iEdgciedg 29032  Edgcedg 29082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-edg 29083
This theorem is referenced by:  edglnl  29178  numedglnl  29179  umgr2cycllem  35108  isuspgrim0lem  47755  isuspgrim0  47756  clnbgrgrimlem  47785  clnbgrgrim  47786  grimedg  47787  uspgrlimlem4  47815
  Copyright terms: Public domain W3C validator