MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgedg Structured version   Visualization version   GIF version

Theorem iedgedg 28963
Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.)
Hypothesis
Ref Expression
iedgedg.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
iedgedg ((Fun 𝐸𝐼 ∈ dom 𝐸) → (𝐸𝐼) ∈ (Edg‘𝐺))

Proof of Theorem iedgedg
StepHypRef Expression
1 fvelrn 7063 . 2 ((Fun 𝐸𝐼 ∈ dom 𝐸) → (𝐸𝐼) ∈ ran 𝐸)
2 edgval 28962 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
3 iedgedg.e . . . 4 𝐸 = (iEdg‘𝐺)
43rneqi 5915 . . 3 ran 𝐸 = ran (iEdg‘𝐺)
52, 4eqtr4i 2760 . 2 (Edg‘𝐺) = ran 𝐸
61, 5eleqtrrdi 2844 1 ((Fun 𝐸𝐼 ∈ dom 𝐸) → (𝐸𝐼) ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  dom cdm 5652  ran crn 5653  Fun wfun 6522  cfv 6528  iEdgciedg 28910  Edgcedg 28960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-iota 6481  df-fun 6530  df-fn 6531  df-fv 6536  df-edg 28961
This theorem is referenced by:  edglnl  29056  numedglnl  29057  umgr2cycllem  35091  isuspgrim0lem  47824  isuspgrim0  47825  clnbgrgrimlem  47854  clnbgrgrim  47855  grimedg  47856  uspgrlimlem4  47911
  Copyright terms: Public domain W3C validator