| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fpmd | Structured version Visualization version GIF version | ||
| Description: A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| fpmd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fpmd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| fpmd.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| fpmd.f | ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
| Ref | Expression |
|---|---|
| fpmd | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpmd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | fpmd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | fpmd.f | . 2 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) | |
| 4 | fpmd.c | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 5 | elpm2r 8857 | . 2 ⊢ (((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) ∧ (𝐹:𝐶⟶𝐵 ∧ 𝐶 ⊆ 𝐴)) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 ⟶wf 6526 (class class class)co 7403 ↑pm cpm 8839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-pm 8841 |
| This theorem is referenced by: xlimbr 45804 fuzxrpmcn 45805 |
| Copyright terms: Public domain | W3C validator |