Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpmd Structured version   Visualization version   GIF version

Theorem fpmd 43958
Description: A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fpmd.a (𝜑𝐴𝑉)
fpmd.b (𝜑𝐵𝑊)
fpmd.c (𝜑𝐶𝐴)
fpmd.f (𝜑𝐹:𝐶𝐵)
Assertion
Ref Expression
fpmd (𝜑𝐹 ∈ (𝐵pm 𝐴))

Proof of Theorem fpmd
StepHypRef Expression
1 fpmd.b . 2 (𝜑𝐵𝑊)
2 fpmd.a . 2 (𝜑𝐴𝑉)
3 fpmd.f . 2 (𝜑𝐹:𝐶𝐵)
4 fpmd.c . 2 (𝜑𝐶𝐴)
5 elpm2r 8838 . 2 (((𝐵𝑊𝐴𝑉) ∧ (𝐹:𝐶𝐵𝐶𝐴)) → 𝐹 ∈ (𝐵pm 𝐴))
61, 2, 3, 4, 5syl22anc 837 1 (𝜑𝐹 ∈ (𝐵pm 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3948  wf 6539  (class class class)co 7408  pm cpm 8820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-pm 8822
This theorem is referenced by:  xlimbr  44533  fuzxrpmcn  44534
  Copyright terms: Public domain W3C validator