Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpmd Structured version   Visualization version   GIF version

Theorem fpmd 45241
Description: A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fpmd.a (𝜑𝐴𝑉)
fpmd.b (𝜑𝐵𝑊)
fpmd.c (𝜑𝐶𝐴)
fpmd.f (𝜑𝐹:𝐶𝐵)
Assertion
Ref Expression
fpmd (𝜑𝐹 ∈ (𝐵pm 𝐴))

Proof of Theorem fpmd
StepHypRef Expression
1 fpmd.b . 2 (𝜑𝐵𝑊)
2 fpmd.a . 2 (𝜑𝐴𝑉)
3 fpmd.f . 2 (𝜑𝐹:𝐶𝐵)
4 fpmd.c . 2 (𝜑𝐶𝐴)
5 elpm2r 8779 . 2 (((𝐵𝑊𝐴𝑉) ∧ (𝐹:𝐶𝐵𝐶𝐴)) → 𝐹 ∈ (𝐵pm 𝐴))
61, 2, 3, 4, 5syl22anc 838 1 (𝜑𝐹 ∈ (𝐵pm 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3905  wf 6482  (class class class)co 7353  pm cpm 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-pm 8763
This theorem is referenced by:  xlimbr  45809  fuzxrpmcn  45810
  Copyright terms: Public domain W3C validator