Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpmd Structured version   Visualization version   GIF version

Theorem fpmd 45235
Description: A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fpmd.a (𝜑𝐴𝑉)
fpmd.b (𝜑𝐵𝑊)
fpmd.c (𝜑𝐶𝐴)
fpmd.f (𝜑𝐹:𝐶𝐵)
Assertion
Ref Expression
fpmd (𝜑𝐹 ∈ (𝐵pm 𝐴))

Proof of Theorem fpmd
StepHypRef Expression
1 fpmd.b . 2 (𝜑𝐵𝑊)
2 fpmd.a . 2 (𝜑𝐴𝑉)
3 fpmd.f . 2 (𝜑𝐹:𝐶𝐵)
4 fpmd.c . 2 (𝜑𝐶𝐴)
5 elpm2r 8857 . 2 (((𝐵𝑊𝐴𝑉) ∧ (𝐹:𝐶𝐵𝐶𝐴)) → 𝐹 ∈ (𝐵pm 𝐴))
61, 2, 3, 4, 5syl22anc 838 1 (𝜑𝐹 ∈ (𝐵pm 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3926  wf 6526  (class class class)co 7403  pm cpm 8839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-pm 8841
This theorem is referenced by:  xlimbr  45804  fuzxrpmcn  45805
  Copyright terms: Public domain W3C validator