![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lemd | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9704 for detailed description. (Contributed by NM, 28-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lemd | ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = (𝐹‘∅)) | |
2 | inf3lem.1 | . . . . . 6 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
3 | inf3lem.2 | . . . . . 6 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
4 | inf3lem.3 | . . . . . 6 ⊢ 𝐴 ∈ V | |
5 | inf3lem.4 | . . . . . 6 ⊢ 𝐵 ∈ V | |
6 | 2, 3, 4, 5 | inf3lemb 9694 | . . . . 5 ⊢ (𝐹‘∅) = ∅ |
7 | 1, 6 | eqtrdi 2796 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = ∅) |
8 | 0ss 4423 | . . . 4 ⊢ ∅ ⊆ 𝑥 | |
9 | 7, 8 | eqsstrdi 4063 | . . 3 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) ⊆ 𝑥) |
10 | 9 | a1d 25 | . 2 ⊢ (𝐴 = ∅ → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥)) |
11 | nnsuc 7921 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑣 ∈ ω 𝐴 = suc 𝑣) | |
12 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑣 ∈ V | |
13 | 2, 3, 12, 5 | inf3lemc 9695 | . . . . . . . . 9 ⊢ (𝑣 ∈ ω → (𝐹‘suc 𝑣) = (𝐺‘(𝐹‘𝑣))) |
14 | 13 | eleq2d 2830 | . . . . . . . 8 ⊢ (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) ↔ 𝑢 ∈ (𝐺‘(𝐹‘𝑣)))) |
15 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑢 ∈ V | |
16 | fvex 6933 | . . . . . . . . . 10 ⊢ (𝐹‘𝑣) ∈ V | |
17 | 2, 3, 15, 16 | inf3lema 9693 | . . . . . . . . 9 ⊢ (𝑢 ∈ (𝐺‘(𝐹‘𝑣)) ↔ (𝑢 ∈ 𝑥 ∧ (𝑢 ∩ 𝑥) ⊆ (𝐹‘𝑣))) |
18 | 17 | simplbi 497 | . . . . . . . 8 ⊢ (𝑢 ∈ (𝐺‘(𝐹‘𝑣)) → 𝑢 ∈ 𝑥) |
19 | 14, 18 | biimtrdi 253 | . . . . . . 7 ⊢ (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) → 𝑢 ∈ 𝑥)) |
20 | 19 | ssrdv 4014 | . . . . . 6 ⊢ (𝑣 ∈ ω → (𝐹‘suc 𝑣) ⊆ 𝑥) |
21 | fveq2 6920 | . . . . . . 7 ⊢ (𝐴 = suc 𝑣 → (𝐹‘𝐴) = (𝐹‘suc 𝑣)) | |
22 | 21 | sseq1d 4040 | . . . . . 6 ⊢ (𝐴 = suc 𝑣 → ((𝐹‘𝐴) ⊆ 𝑥 ↔ (𝐹‘suc 𝑣) ⊆ 𝑥)) |
23 | 20, 22 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑣 ∈ ω → (𝐴 = suc 𝑣 → (𝐹‘𝐴) ⊆ 𝑥)) |
24 | 23 | rexlimiv 3154 | . . . 4 ⊢ (∃𝑣 ∈ ω 𝐴 = suc 𝑣 → (𝐹‘𝐴) ⊆ 𝑥) |
25 | 11, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ⊆ 𝑥) |
26 | 25 | expcom 413 | . 2 ⊢ (𝐴 ≠ ∅ → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥)) |
27 | 10, 26 | pm2.61ine 3031 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ↦ cmpt 5249 ↾ cres 5702 suc csuc 6397 ‘cfv 6573 ωcom 7903 reccrdg 8465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 |
This theorem is referenced by: inf3lem2 9698 inf3lem3 9699 inf3lem6 9702 |
Copyright terms: Public domain | W3C validator |