| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf3lemd | Structured version Visualization version GIF version | ||
| Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9520 for detailed description. (Contributed by NM, 28-Oct-1996.) |
| Ref | Expression |
|---|---|
| inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
| inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
| inf3lem.3 | ⊢ 𝐴 ∈ V |
| inf3lem.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| inf3lemd | ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = (𝐹‘∅)) | |
| 2 | inf3lem.1 | . . . . . 6 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
| 3 | inf3lem.2 | . . . . . 6 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
| 4 | inf3lem.3 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 5 | inf3lem.4 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 6 | 2, 3, 4, 5 | inf3lemb 9510 | . . . . 5 ⊢ (𝐹‘∅) = ∅ |
| 7 | 1, 6 | eqtrdi 2781 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = ∅) |
| 8 | 0ss 4348 | . . . 4 ⊢ ∅ ⊆ 𝑥 | |
| 9 | 7, 8 | eqsstrdi 3977 | . . 3 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) ⊆ 𝑥) |
| 10 | 9 | a1d 25 | . 2 ⊢ (𝐴 = ∅ → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥)) |
| 11 | nnsuc 7809 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑣 ∈ ω 𝐴 = suc 𝑣) | |
| 12 | vex 3438 | . . . . . . . . . 10 ⊢ 𝑣 ∈ V | |
| 13 | 2, 3, 12, 5 | inf3lemc 9511 | . . . . . . . . 9 ⊢ (𝑣 ∈ ω → (𝐹‘suc 𝑣) = (𝐺‘(𝐹‘𝑣))) |
| 14 | 13 | eleq2d 2815 | . . . . . . . 8 ⊢ (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) ↔ 𝑢 ∈ (𝐺‘(𝐹‘𝑣)))) |
| 15 | vex 3438 | . . . . . . . . . 10 ⊢ 𝑢 ∈ V | |
| 16 | fvex 6830 | . . . . . . . . . 10 ⊢ (𝐹‘𝑣) ∈ V | |
| 17 | 2, 3, 15, 16 | inf3lema 9509 | . . . . . . . . 9 ⊢ (𝑢 ∈ (𝐺‘(𝐹‘𝑣)) ↔ (𝑢 ∈ 𝑥 ∧ (𝑢 ∩ 𝑥) ⊆ (𝐹‘𝑣))) |
| 18 | 17 | simplbi 497 | . . . . . . . 8 ⊢ (𝑢 ∈ (𝐺‘(𝐹‘𝑣)) → 𝑢 ∈ 𝑥) |
| 19 | 14, 18 | biimtrdi 253 | . . . . . . 7 ⊢ (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) → 𝑢 ∈ 𝑥)) |
| 20 | 19 | ssrdv 3938 | . . . . . 6 ⊢ (𝑣 ∈ ω → (𝐹‘suc 𝑣) ⊆ 𝑥) |
| 21 | fveq2 6817 | . . . . . . 7 ⊢ (𝐴 = suc 𝑣 → (𝐹‘𝐴) = (𝐹‘suc 𝑣)) | |
| 22 | 21 | sseq1d 3964 | . . . . . 6 ⊢ (𝐴 = suc 𝑣 → ((𝐹‘𝐴) ⊆ 𝑥 ↔ (𝐹‘suc 𝑣) ⊆ 𝑥)) |
| 23 | 20, 22 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑣 ∈ ω → (𝐴 = suc 𝑣 → (𝐹‘𝐴) ⊆ 𝑥)) |
| 24 | 23 | rexlimiv 3124 | . . . 4 ⊢ (∃𝑣 ∈ ω 𝐴 = suc 𝑣 → (𝐹‘𝐴) ⊆ 𝑥) |
| 25 | 11, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ⊆ 𝑥) |
| 26 | 25 | expcom 413 | . 2 ⊢ (𝐴 ≠ ∅ → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥)) |
| 27 | 10, 26 | pm2.61ine 3009 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∃wrex 3054 {crab 3393 Vcvv 3434 ∩ cin 3899 ⊆ wss 3900 ∅c0 4281 ↦ cmpt 5170 ↾ cres 5616 suc csuc 6304 ‘cfv 6477 ωcom 7791 reccrdg 8323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 |
| This theorem is referenced by: inf3lem2 9514 inf3lem3 9515 inf3lem6 9518 |
| Copyright terms: Public domain | W3C validator |