MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lemd Structured version   Visualization version   GIF version

Theorem inf3lemd 9633
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9641 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lemd (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lemd
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6872 . . . . 5 (𝐴 = ∅ → (𝐹𝐴) = (𝐹‘∅))
2 inf3lem.1 . . . . . 6 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
3 inf3lem.2 . . . . . 6 𝐹 = (rec(𝐺, ∅) ↾ ω)
4 inf3lem.3 . . . . . 6 𝐴 ∈ V
5 inf3lem.4 . . . . . 6 𝐵 ∈ V
62, 3, 4, 5inf3lemb 9631 . . . . 5 (𝐹‘∅) = ∅
71, 6eqtrdi 2785 . . . 4 (𝐴 = ∅ → (𝐹𝐴) = ∅)
8 0ss 4373 . . . 4 ∅ ⊆ 𝑥
97, 8eqsstrdi 4001 . . 3 (𝐴 = ∅ → (𝐹𝐴) ⊆ 𝑥)
109a1d 25 . 2 (𝐴 = ∅ → (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥))
11 nnsuc 7873 . . . 4 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑣 ∈ ω 𝐴 = suc 𝑣)
12 vex 3461 . . . . . . . . . 10 𝑣 ∈ V
132, 3, 12, 5inf3lemc 9632 . . . . . . . . 9 (𝑣 ∈ ω → (𝐹‘suc 𝑣) = (𝐺‘(𝐹𝑣)))
1413eleq2d 2819 . . . . . . . 8 (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) ↔ 𝑢 ∈ (𝐺‘(𝐹𝑣))))
15 vex 3461 . . . . . . . . . 10 𝑢 ∈ V
16 fvex 6885 . . . . . . . . . 10 (𝐹𝑣) ∈ V
172, 3, 15, 16inf3lema 9630 . . . . . . . . 9 (𝑢 ∈ (𝐺‘(𝐹𝑣)) ↔ (𝑢𝑥 ∧ (𝑢𝑥) ⊆ (𝐹𝑣)))
1817simplbi 497 . . . . . . . 8 (𝑢 ∈ (𝐺‘(𝐹𝑣)) → 𝑢𝑥)
1914, 18biimtrdi 253 . . . . . . 7 (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) → 𝑢𝑥))
2019ssrdv 3962 . . . . . 6 (𝑣 ∈ ω → (𝐹‘suc 𝑣) ⊆ 𝑥)
21 fveq2 6872 . . . . . . 7 (𝐴 = suc 𝑣 → (𝐹𝐴) = (𝐹‘suc 𝑣))
2221sseq1d 3988 . . . . . 6 (𝐴 = suc 𝑣 → ((𝐹𝐴) ⊆ 𝑥 ↔ (𝐹‘suc 𝑣) ⊆ 𝑥))
2320, 22syl5ibrcom 247 . . . . 5 (𝑣 ∈ ω → (𝐴 = suc 𝑣 → (𝐹𝐴) ⊆ 𝑥))
2423rexlimiv 3132 . . . 4 (∃𝑣 ∈ ω 𝐴 = suc 𝑣 → (𝐹𝐴) ⊆ 𝑥)
2511, 24syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ⊆ 𝑥)
2625expcom 413 . 2 (𝐴 ≠ ∅ → (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥))
2710, 26pm2.61ine 3014 1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3413  Vcvv 3457  cin 3923  wss 3924  c0 4306  cmpt 5198  cres 5653  suc csuc 6351  cfv 6527  ωcom 7855  reccrdg 8417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418
This theorem is referenced by:  inf3lem2  9635  inf3lem3  9636  inf3lem6  9639
  Copyright terms: Public domain W3C validator