MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lemd Structured version   Visualization version   GIF version

Theorem inf3lemd 9087
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9095 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lemd (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lemd
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6661 . . . . 5 (𝐴 = ∅ → (𝐹𝐴) = (𝐹‘∅))
2 inf3lem.1 . . . . . 6 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
3 inf3lem.2 . . . . . 6 𝐹 = (rec(𝐺, ∅) ↾ ω)
4 inf3lem.3 . . . . . 6 𝐴 ∈ V
5 inf3lem.4 . . . . . 6 𝐵 ∈ V
62, 3, 4, 5inf3lemb 9085 . . . . 5 (𝐹‘∅) = ∅
71, 6syl6eq 2875 . . . 4 (𝐴 = ∅ → (𝐹𝐴) = ∅)
8 0ss 4333 . . . 4 ∅ ⊆ 𝑥
97, 8eqsstrdi 4007 . . 3 (𝐴 = ∅ → (𝐹𝐴) ⊆ 𝑥)
109a1d 25 . 2 (𝐴 = ∅ → (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥))
11 nnsuc 7591 . . . 4 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑣 ∈ ω 𝐴 = suc 𝑣)
12 vex 3483 . . . . . . . . . 10 𝑣 ∈ V
132, 3, 12, 5inf3lemc 9086 . . . . . . . . 9 (𝑣 ∈ ω → (𝐹‘suc 𝑣) = (𝐺‘(𝐹𝑣)))
1413eleq2d 2901 . . . . . . . 8 (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) ↔ 𝑢 ∈ (𝐺‘(𝐹𝑣))))
15 vex 3483 . . . . . . . . . 10 𝑢 ∈ V
16 fvex 6674 . . . . . . . . . 10 (𝐹𝑣) ∈ V
172, 3, 15, 16inf3lema 9084 . . . . . . . . 9 (𝑢 ∈ (𝐺‘(𝐹𝑣)) ↔ (𝑢𝑥 ∧ (𝑢𝑥) ⊆ (𝐹𝑣)))
1817simplbi 501 . . . . . . . 8 (𝑢 ∈ (𝐺‘(𝐹𝑣)) → 𝑢𝑥)
1914, 18syl6bi 256 . . . . . . 7 (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) → 𝑢𝑥))
2019ssrdv 3959 . . . . . 6 (𝑣 ∈ ω → (𝐹‘suc 𝑣) ⊆ 𝑥)
21 fveq2 6661 . . . . . . 7 (𝐴 = suc 𝑣 → (𝐹𝐴) = (𝐹‘suc 𝑣))
2221sseq1d 3984 . . . . . 6 (𝐴 = suc 𝑣 → ((𝐹𝐴) ⊆ 𝑥 ↔ (𝐹‘suc 𝑣) ⊆ 𝑥))
2320, 22syl5ibrcom 250 . . . . 5 (𝑣 ∈ ω → (𝐴 = suc 𝑣 → (𝐹𝐴) ⊆ 𝑥))
2423rexlimiv 3272 . . . 4 (∃𝑣 ∈ ω 𝐴 = suc 𝑣 → (𝐹𝐴) ⊆ 𝑥)
2511, 24syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ⊆ 𝑥)
2625expcom 417 . 2 (𝐴 ≠ ∅ → (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥))
2710, 26pm2.61ine 3097 1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3014  wrex 3134  {crab 3137  Vcvv 3480  cin 3918  wss 3919  c0 4276  cmpt 5132  cres 5544  suc csuc 6180  cfv 6343  ωcom 7574  reccrdg 8041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042
This theorem is referenced by:  inf3lem2  9089  inf3lem3  9090  inf3lem6  9093
  Copyright terms: Public domain W3C validator