| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf3lemd | Structured version Visualization version GIF version | ||
| Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9550 for detailed description. (Contributed by NM, 28-Oct-1996.) |
| Ref | Expression |
|---|---|
| inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
| inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
| inf3lem.3 | ⊢ 𝐴 ∈ V |
| inf3lem.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| inf3lemd | ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = (𝐹‘∅)) | |
| 2 | inf3lem.1 | . . . . . 6 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
| 3 | inf3lem.2 | . . . . . 6 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
| 4 | inf3lem.3 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 5 | inf3lem.4 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 6 | 2, 3, 4, 5 | inf3lemb 9540 | . . . . 5 ⊢ (𝐹‘∅) = ∅ |
| 7 | 1, 6 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = ∅) |
| 8 | 0ss 4353 | . . . 4 ⊢ ∅ ⊆ 𝑥 | |
| 9 | 7, 8 | eqsstrdi 3982 | . . 3 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) ⊆ 𝑥) |
| 10 | 9 | a1d 25 | . 2 ⊢ (𝐴 = ∅ → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥)) |
| 11 | nnsuc 7824 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑣 ∈ ω 𝐴 = suc 𝑣) | |
| 12 | vex 3442 | . . . . . . . . . 10 ⊢ 𝑣 ∈ V | |
| 13 | 2, 3, 12, 5 | inf3lemc 9541 | . . . . . . . . 9 ⊢ (𝑣 ∈ ω → (𝐹‘suc 𝑣) = (𝐺‘(𝐹‘𝑣))) |
| 14 | 13 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) ↔ 𝑢 ∈ (𝐺‘(𝐹‘𝑣)))) |
| 15 | vex 3442 | . . . . . . . . . 10 ⊢ 𝑢 ∈ V | |
| 16 | fvex 6839 | . . . . . . . . . 10 ⊢ (𝐹‘𝑣) ∈ V | |
| 17 | 2, 3, 15, 16 | inf3lema 9539 | . . . . . . . . 9 ⊢ (𝑢 ∈ (𝐺‘(𝐹‘𝑣)) ↔ (𝑢 ∈ 𝑥 ∧ (𝑢 ∩ 𝑥) ⊆ (𝐹‘𝑣))) |
| 18 | 17 | simplbi 497 | . . . . . . . 8 ⊢ (𝑢 ∈ (𝐺‘(𝐹‘𝑣)) → 𝑢 ∈ 𝑥) |
| 19 | 14, 18 | biimtrdi 253 | . . . . . . 7 ⊢ (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) → 𝑢 ∈ 𝑥)) |
| 20 | 19 | ssrdv 3943 | . . . . . 6 ⊢ (𝑣 ∈ ω → (𝐹‘suc 𝑣) ⊆ 𝑥) |
| 21 | fveq2 6826 | . . . . . . 7 ⊢ (𝐴 = suc 𝑣 → (𝐹‘𝐴) = (𝐹‘suc 𝑣)) | |
| 22 | 21 | sseq1d 3969 | . . . . . 6 ⊢ (𝐴 = suc 𝑣 → ((𝐹‘𝐴) ⊆ 𝑥 ↔ (𝐹‘suc 𝑣) ⊆ 𝑥)) |
| 23 | 20, 22 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑣 ∈ ω → (𝐴 = suc 𝑣 → (𝐹‘𝐴) ⊆ 𝑥)) |
| 24 | 23 | rexlimiv 3123 | . . . 4 ⊢ (∃𝑣 ∈ ω 𝐴 = suc 𝑣 → (𝐹‘𝐴) ⊆ 𝑥) |
| 25 | 11, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ⊆ 𝑥) |
| 26 | 25 | expcom 413 | . 2 ⊢ (𝐴 ≠ ∅ → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥)) |
| 27 | 10, 26 | pm2.61ine 3008 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3396 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 ↦ cmpt 5176 ↾ cres 5625 suc csuc 6313 ‘cfv 6486 ωcom 7806 reccrdg 8338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 |
| This theorem is referenced by: inf3lem2 9544 inf3lem3 9545 inf3lem6 9548 |
| Copyright terms: Public domain | W3C validator |