| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf3lemd | Structured version Visualization version GIF version | ||
| Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9641 for detailed description. (Contributed by NM, 28-Oct-1996.) |
| Ref | Expression |
|---|---|
| inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
| inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
| inf3lem.3 | ⊢ 𝐴 ∈ V |
| inf3lem.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| inf3lemd | ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6872 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = (𝐹‘∅)) | |
| 2 | inf3lem.1 | . . . . . 6 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
| 3 | inf3lem.2 | . . . . . 6 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
| 4 | inf3lem.3 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 5 | inf3lem.4 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 6 | 2, 3, 4, 5 | inf3lemb 9631 | . . . . 5 ⊢ (𝐹‘∅) = ∅ |
| 7 | 1, 6 | eqtrdi 2785 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = ∅) |
| 8 | 0ss 4373 | . . . 4 ⊢ ∅ ⊆ 𝑥 | |
| 9 | 7, 8 | eqsstrdi 4001 | . . 3 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) ⊆ 𝑥) |
| 10 | 9 | a1d 25 | . 2 ⊢ (𝐴 = ∅ → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥)) |
| 11 | nnsuc 7873 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑣 ∈ ω 𝐴 = suc 𝑣) | |
| 12 | vex 3461 | . . . . . . . . . 10 ⊢ 𝑣 ∈ V | |
| 13 | 2, 3, 12, 5 | inf3lemc 9632 | . . . . . . . . 9 ⊢ (𝑣 ∈ ω → (𝐹‘suc 𝑣) = (𝐺‘(𝐹‘𝑣))) |
| 14 | 13 | eleq2d 2819 | . . . . . . . 8 ⊢ (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) ↔ 𝑢 ∈ (𝐺‘(𝐹‘𝑣)))) |
| 15 | vex 3461 | . . . . . . . . . 10 ⊢ 𝑢 ∈ V | |
| 16 | fvex 6885 | . . . . . . . . . 10 ⊢ (𝐹‘𝑣) ∈ V | |
| 17 | 2, 3, 15, 16 | inf3lema 9630 | . . . . . . . . 9 ⊢ (𝑢 ∈ (𝐺‘(𝐹‘𝑣)) ↔ (𝑢 ∈ 𝑥 ∧ (𝑢 ∩ 𝑥) ⊆ (𝐹‘𝑣))) |
| 18 | 17 | simplbi 497 | . . . . . . . 8 ⊢ (𝑢 ∈ (𝐺‘(𝐹‘𝑣)) → 𝑢 ∈ 𝑥) |
| 19 | 14, 18 | biimtrdi 253 | . . . . . . 7 ⊢ (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) → 𝑢 ∈ 𝑥)) |
| 20 | 19 | ssrdv 3962 | . . . . . 6 ⊢ (𝑣 ∈ ω → (𝐹‘suc 𝑣) ⊆ 𝑥) |
| 21 | fveq2 6872 | . . . . . . 7 ⊢ (𝐴 = suc 𝑣 → (𝐹‘𝐴) = (𝐹‘suc 𝑣)) | |
| 22 | 21 | sseq1d 3988 | . . . . . 6 ⊢ (𝐴 = suc 𝑣 → ((𝐹‘𝐴) ⊆ 𝑥 ↔ (𝐹‘suc 𝑣) ⊆ 𝑥)) |
| 23 | 20, 22 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑣 ∈ ω → (𝐴 = suc 𝑣 → (𝐹‘𝐴) ⊆ 𝑥)) |
| 24 | 23 | rexlimiv 3132 | . . . 4 ⊢ (∃𝑣 ∈ ω 𝐴 = suc 𝑣 → (𝐹‘𝐴) ⊆ 𝑥) |
| 25 | 11, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ⊆ 𝑥) |
| 26 | 25 | expcom 413 | . 2 ⊢ (𝐴 ≠ ∅ → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥)) |
| 27 | 10, 26 | pm2.61ine 3014 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {crab 3413 Vcvv 3457 ∩ cin 3923 ⊆ wss 3924 ∅c0 4306 ↦ cmpt 5198 ↾ cres 5653 suc csuc 6351 ‘cfv 6527 ωcom 7855 reccrdg 8417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 |
| This theorem is referenced by: inf3lem2 9635 inf3lem3 9636 inf3lem6 9639 |
| Copyright terms: Public domain | W3C validator |