MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lemd Structured version   Visualization version   GIF version

Theorem inf3lemd 9658
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9666 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lemd (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lemd
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6902 . . . . 5 (𝐴 = ∅ → (𝐹𝐴) = (𝐹‘∅))
2 inf3lem.1 . . . . . 6 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
3 inf3lem.2 . . . . . 6 𝐹 = (rec(𝐺, ∅) ↾ ω)
4 inf3lem.3 . . . . . 6 𝐴 ∈ V
5 inf3lem.4 . . . . . 6 𝐵 ∈ V
62, 3, 4, 5inf3lemb 9656 . . . . 5 (𝐹‘∅) = ∅
71, 6eqtrdi 2784 . . . 4 (𝐴 = ∅ → (𝐹𝐴) = ∅)
8 0ss 4400 . . . 4 ∅ ⊆ 𝑥
97, 8eqsstrdi 4036 . . 3 (𝐴 = ∅ → (𝐹𝐴) ⊆ 𝑥)
109a1d 25 . 2 (𝐴 = ∅ → (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥))
11 nnsuc 7894 . . . 4 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑣 ∈ ω 𝐴 = suc 𝑣)
12 vex 3477 . . . . . . . . . 10 𝑣 ∈ V
132, 3, 12, 5inf3lemc 9657 . . . . . . . . 9 (𝑣 ∈ ω → (𝐹‘suc 𝑣) = (𝐺‘(𝐹𝑣)))
1413eleq2d 2815 . . . . . . . 8 (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) ↔ 𝑢 ∈ (𝐺‘(𝐹𝑣))))
15 vex 3477 . . . . . . . . . 10 𝑢 ∈ V
16 fvex 6915 . . . . . . . . . 10 (𝐹𝑣) ∈ V
172, 3, 15, 16inf3lema 9655 . . . . . . . . 9 (𝑢 ∈ (𝐺‘(𝐹𝑣)) ↔ (𝑢𝑥 ∧ (𝑢𝑥) ⊆ (𝐹𝑣)))
1817simplbi 496 . . . . . . . 8 (𝑢 ∈ (𝐺‘(𝐹𝑣)) → 𝑢𝑥)
1914, 18biimtrdi 252 . . . . . . 7 (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) → 𝑢𝑥))
2019ssrdv 3988 . . . . . 6 (𝑣 ∈ ω → (𝐹‘suc 𝑣) ⊆ 𝑥)
21 fveq2 6902 . . . . . . 7 (𝐴 = suc 𝑣 → (𝐹𝐴) = (𝐹‘suc 𝑣))
2221sseq1d 4013 . . . . . 6 (𝐴 = suc 𝑣 → ((𝐹𝐴) ⊆ 𝑥 ↔ (𝐹‘suc 𝑣) ⊆ 𝑥))
2320, 22syl5ibrcom 246 . . . . 5 (𝑣 ∈ ω → (𝐴 = suc 𝑣 → (𝐹𝐴) ⊆ 𝑥))
2423rexlimiv 3145 . . . 4 (∃𝑣 ∈ ω 𝐴 = suc 𝑣 → (𝐹𝐴) ⊆ 𝑥)
2511, 24syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ⊆ 𝑥)
2625expcom 412 . 2 (𝐴 ≠ ∅ → (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥))
2710, 26pm2.61ine 3022 1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2937  wrex 3067  {crab 3430  Vcvv 3473  cin 3948  wss 3949  c0 4326  cmpt 5235  cres 5684  suc csuc 6376  cfv 6553  ωcom 7876  reccrdg 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437
This theorem is referenced by:  inf3lem2  9660  inf3lem3  9661  inf3lem6  9664
  Copyright terms: Public domain W3C validator