![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lemb | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9579 for detailed description. (Contributed by NM, 28-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lemb | ⊢ (𝐹‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.2 | . . 3 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
2 | 1 | fveq1i 6847 | . 2 ⊢ (𝐹‘∅) = ((rec(𝐺, ∅) ↾ ω)‘∅) |
3 | 0ex 5268 | . . 3 ⊢ ∅ ∈ V | |
4 | fr0g 8386 | . . 3 ⊢ (∅ ∈ V → ((rec(𝐺, ∅) ↾ ω)‘∅) = ∅) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((rec(𝐺, ∅) ↾ ω)‘∅) = ∅ |
6 | 2, 5 | eqtri 2761 | 1 ⊢ (𝐹‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 {crab 3406 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ∅c0 4286 ↦ cmpt 5192 ↾ cres 5639 ‘cfv 6500 ωcom 7806 reccrdg 8359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 |
This theorem is referenced by: inf3lemd 9571 inf3lem1 9572 inf3lem2 9573 |
Copyright terms: Public domain | W3C validator |