![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lemb | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9629 for detailed description. (Contributed by NM, 28-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lemb | ⊢ (𝐹‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.2 | . . 3 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
2 | 1 | fveq1i 6892 | . 2 ⊢ (𝐹‘∅) = ((rec(𝐺, ∅) ↾ ω)‘∅) |
3 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
4 | fr0g 8435 | . . 3 ⊢ (∅ ∈ V → ((rec(𝐺, ∅) ↾ ω)‘∅) = ∅) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((rec(𝐺, ∅) ↾ ω)‘∅) = ∅ |
6 | 2, 5 | eqtri 2760 | 1 ⊢ (𝐹‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 ↦ cmpt 5231 ↾ cres 5678 ‘cfv 6543 ωcom 7854 reccrdg 8408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 |
This theorem is referenced by: inf3lemd 9621 inf3lem1 9622 inf3lem2 9623 |
Copyright terms: Public domain | W3C validator |