Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . 3
⊢ (𝑣 = ∅ → (𝐹‘𝑣) = (𝐹‘∅)) |
2 | | suceq 6316 |
. . . 4
⊢ (𝑣 = ∅ → suc 𝑣 = suc ∅) |
3 | 2 | fveq2d 6760 |
. . 3
⊢ (𝑣 = ∅ → (𝐹‘suc 𝑣) = (𝐹‘suc ∅)) |
4 | 1, 3 | sseq12d 3950 |
. 2
⊢ (𝑣 = ∅ → ((𝐹‘𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘∅) ⊆ (𝐹‘suc ∅))) |
5 | | fveq2 6756 |
. . 3
⊢ (𝑣 = 𝑢 → (𝐹‘𝑣) = (𝐹‘𝑢)) |
6 | | suceq 6316 |
. . . 4
⊢ (𝑣 = 𝑢 → suc 𝑣 = suc 𝑢) |
7 | 6 | fveq2d 6760 |
. . 3
⊢ (𝑣 = 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝑢)) |
8 | 5, 7 | sseq12d 3950 |
. 2
⊢ (𝑣 = 𝑢 → ((𝐹‘𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘𝑢) ⊆ (𝐹‘suc 𝑢))) |
9 | | fveq2 6756 |
. . 3
⊢ (𝑣 = suc 𝑢 → (𝐹‘𝑣) = (𝐹‘suc 𝑢)) |
10 | | suceq 6316 |
. . . 4
⊢ (𝑣 = suc 𝑢 → suc 𝑣 = suc suc 𝑢) |
11 | 10 | fveq2d 6760 |
. . 3
⊢ (𝑣 = suc 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc suc 𝑢)) |
12 | 9, 11 | sseq12d 3950 |
. 2
⊢ (𝑣 = suc 𝑢 → ((𝐹‘𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢))) |
13 | | fveq2 6756 |
. . 3
⊢ (𝑣 = 𝐴 → (𝐹‘𝑣) = (𝐹‘𝐴)) |
14 | | suceq 6316 |
. . . 4
⊢ (𝑣 = 𝐴 → suc 𝑣 = suc 𝐴) |
15 | 14 | fveq2d 6760 |
. . 3
⊢ (𝑣 = 𝐴 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝐴)) |
16 | 13, 15 | sseq12d 3950 |
. 2
⊢ (𝑣 = 𝐴 → ((𝐹‘𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴))) |
17 | | inf3lem.1 |
. . . 4
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
18 | | inf3lem.2 |
. . . 4
⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
19 | | inf3lem.3 |
. . . 4
⊢ 𝐴 ∈ V |
20 | 17, 18, 19, 19 | inf3lemb 9313 |
. . 3
⊢ (𝐹‘∅) =
∅ |
21 | | 0ss 4327 |
. . 3
⊢ ∅
⊆ (𝐹‘suc
∅) |
22 | 20, 21 | eqsstri 3951 |
. 2
⊢ (𝐹‘∅) ⊆ (𝐹‘suc
∅) |
23 | | sstr2 3924 |
. . . . . . . 8
⊢ ((𝑣 ∩ 𝑥) ⊆ (𝐹‘𝑢) → ((𝐹‘𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣 ∩ 𝑥) ⊆ (𝐹‘suc 𝑢))) |
24 | 23 | com12 32 |
. . . . . . 7
⊢ ((𝐹‘𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣 ∩ 𝑥) ⊆ (𝐹‘𝑢) → (𝑣 ∩ 𝑥) ⊆ (𝐹‘suc 𝑢))) |
25 | 24 | anim2d 611 |
. . . . . 6
⊢ ((𝐹‘𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣 ∈ 𝑥 ∧ (𝑣 ∩ 𝑥) ⊆ (𝐹‘𝑢)) → (𝑣 ∈ 𝑥 ∧ (𝑣 ∩ 𝑥) ⊆ (𝐹‘suc 𝑢)))) |
26 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑢 ∈ V |
27 | 17, 18, 26, 19 | inf3lemc 9314 |
. . . . . . . . 9
⊢ (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹‘𝑢))) |
28 | 27 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹‘𝑢)))) |
29 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑣 ∈ V |
30 | | fvex 6769 |
. . . . . . . . 9
⊢ (𝐹‘𝑢) ∈ V |
31 | 17, 18, 29, 30 | inf3lema 9312 |
. . . . . . . 8
⊢ (𝑣 ∈ (𝐺‘(𝐹‘𝑢)) ↔ (𝑣 ∈ 𝑥 ∧ (𝑣 ∩ 𝑥) ⊆ (𝐹‘𝑢))) |
32 | 28, 31 | bitrdi 286 |
. . . . . . 7
⊢ (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ (𝑣 ∈ 𝑥 ∧ (𝑣 ∩ 𝑥) ⊆ (𝐹‘𝑢)))) |
33 | | peano2b 7704 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ω ↔ suc 𝑢 ∈
ω) |
34 | 26 | sucex 7633 |
. . . . . . . . . . 11
⊢ suc 𝑢 ∈ V |
35 | 17, 18, 34, 19 | inf3lemc 9314 |
. . . . . . . . . 10
⊢ (suc
𝑢 ∈ ω →
(𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢))) |
36 | 33, 35 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢))) |
37 | 36 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢)))) |
38 | | fvex 6769 |
. . . . . . . . 9
⊢ (𝐹‘suc 𝑢) ∈ V |
39 | 17, 18, 29, 38 | inf3lema 9312 |
. . . . . . . 8
⊢ (𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢)) ↔ (𝑣 ∈ 𝑥 ∧ (𝑣 ∩ 𝑥) ⊆ (𝐹‘suc 𝑢))) |
40 | 37, 39 | bitrdi 286 |
. . . . . . 7
⊢ (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ (𝑣 ∈ 𝑥 ∧ (𝑣 ∩ 𝑥) ⊆ (𝐹‘suc 𝑢)))) |
41 | 32, 40 | imbi12d 344 |
. . . . . 6
⊢ (𝑢 ∈ ω → ((𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)) ↔ ((𝑣 ∈ 𝑥 ∧ (𝑣 ∩ 𝑥) ⊆ (𝐹‘𝑢)) → (𝑣 ∈ 𝑥 ∧ (𝑣 ∩ 𝑥) ⊆ (𝐹‘suc 𝑢))))) |
42 | 25, 41 | syl5ibr 245 |
. . . . 5
⊢ (𝑢 ∈ ω → ((𝐹‘𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)))) |
43 | 42 | imp 406 |
. . . 4
⊢ ((𝑢 ∈ ω ∧ (𝐹‘𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢))) |
44 | 43 | ssrdv 3923 |
. . 3
⊢ ((𝑢 ∈ ω ∧ (𝐹‘𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)) |
45 | 44 | ex 412 |
. 2
⊢ (𝑢 ∈ ω → ((𝐹‘𝑢) ⊆ (𝐹‘suc 𝑢) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢))) |
46 | 4, 8, 12, 16, 22, 45 | finds 7719 |
1
⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴)) |