MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem1 Structured version   Visualization version   GIF version

Theorem inf3lem1 9668
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9675 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem1
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . 3 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
2 suceq 6450 . . . 4 (𝑣 = ∅ → suc 𝑣 = suc ∅)
32fveq2d 6910 . . 3 (𝑣 = ∅ → (𝐹‘suc 𝑣) = (𝐹‘suc ∅))
41, 3sseq12d 4017 . 2 (𝑣 = ∅ → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘∅) ⊆ (𝐹‘suc ∅)))
5 fveq2 6906 . . 3 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
6 suceq 6450 . . . 4 (𝑣 = 𝑢 → suc 𝑣 = suc 𝑢)
76fveq2d 6910 . . 3 (𝑣 = 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝑢))
85, 7sseq12d 4017 . 2 (𝑣 = 𝑢 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)))
9 fveq2 6906 . . 3 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
10 suceq 6450 . . . 4 (𝑣 = suc 𝑢 → suc 𝑣 = suc suc 𝑢)
1110fveq2d 6910 . . 3 (𝑣 = suc 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc suc 𝑢))
129, 11sseq12d 4017 . 2 (𝑣 = suc 𝑢 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)))
13 fveq2 6906 . . 3 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
14 suceq 6450 . . . 4 (𝑣 = 𝐴 → suc 𝑣 = suc 𝐴)
1514fveq2d 6910 . . 3 (𝑣 = 𝐴 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝐴))
1613, 15sseq12d 4017 . 2 (𝑣 = 𝐴 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹𝐴) ⊆ (𝐹‘suc 𝐴)))
17 inf3lem.1 . . . 4 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
18 inf3lem.2 . . . 4 𝐹 = (rec(𝐺, ∅) ↾ ω)
19 inf3lem.3 . . . 4 𝐴 ∈ V
2017, 18, 19, 19inf3lemb 9665 . . 3 (𝐹‘∅) = ∅
21 0ss 4400 . . 3 ∅ ⊆ (𝐹‘suc ∅)
2220, 21eqsstri 4030 . 2 (𝐹‘∅) ⊆ (𝐹‘suc ∅)
23 sstr2 3990 . . . . . . . 8 ((𝑣𝑥) ⊆ (𝐹𝑢) → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
2423com12 32 . . . . . . 7 ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣𝑥) ⊆ (𝐹𝑢) → (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
2524anim2d 612 . . . . . 6 ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢))))
26 vex 3484 . . . . . . . . . 10 𝑢 ∈ V
2717, 18, 26, 19inf3lemc 9666 . . . . . . . . 9 (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹𝑢)))
2827eleq2d 2827 . . . . . . . 8 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹𝑢))))
29 vex 3484 . . . . . . . . 9 𝑣 ∈ V
30 fvex 6919 . . . . . . . . 9 (𝐹𝑢) ∈ V
3117, 18, 29, 30inf3lema 9664 . . . . . . . 8 (𝑣 ∈ (𝐺‘(𝐹𝑢)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)))
3228, 31bitrdi 287 . . . . . . 7 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢))))
33 peano2b 7904 . . . . . . . . . 10 (𝑢 ∈ ω ↔ suc 𝑢 ∈ ω)
3426sucex 7826 . . . . . . . . . . 11 suc 𝑢 ∈ V
3517, 18, 34, 19inf3lemc 9666 . . . . . . . . . 10 (suc 𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢)))
3633, 35sylbi 217 . . . . . . . . 9 (𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢)))
3736eleq2d 2827 . . . . . . . 8 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢))))
38 fvex 6919 . . . . . . . . 9 (𝐹‘suc 𝑢) ∈ V
3917, 18, 29, 38inf3lema 9664 . . . . . . . 8 (𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
4037, 39bitrdi 287 . . . . . . 7 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢))))
4132, 40imbi12d 344 . . . . . 6 (𝑢 ∈ ω → ((𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)) ↔ ((𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))))
4225, 41imbitrrid 246 . . . . 5 (𝑢 ∈ ω → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢))))
4342imp 406 . . . 4 ((𝑢 ∈ ω ∧ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)))
4443ssrdv 3989 . . 3 ((𝑢 ∈ ω ∧ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢))
4544ex 412 . 2 (𝑢 ∈ ω → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)))
464, 8, 12, 16, 22, 45finds 7918 1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  cin 3950  wss 3951  c0 4333  cmpt 5225  cres 5687  suc csuc 6386  cfv 6561  ωcom 7887  reccrdg 8449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450
This theorem is referenced by:  inf3lem4  9671
  Copyright terms: Public domain W3C validator