MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem1 Structured version   Visualization version   GIF version

Theorem inf3lem1 9091
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9098 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem1
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6670 . . 3 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
2 suceq 6256 . . . 4 (𝑣 = ∅ → suc 𝑣 = suc ∅)
32fveq2d 6674 . . 3 (𝑣 = ∅ → (𝐹‘suc 𝑣) = (𝐹‘suc ∅))
41, 3sseq12d 4000 . 2 (𝑣 = ∅ → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘∅) ⊆ (𝐹‘suc ∅)))
5 fveq2 6670 . . 3 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
6 suceq 6256 . . . 4 (𝑣 = 𝑢 → suc 𝑣 = suc 𝑢)
76fveq2d 6674 . . 3 (𝑣 = 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝑢))
85, 7sseq12d 4000 . 2 (𝑣 = 𝑢 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)))
9 fveq2 6670 . . 3 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
10 suceq 6256 . . . 4 (𝑣 = suc 𝑢 → suc 𝑣 = suc suc 𝑢)
1110fveq2d 6674 . . 3 (𝑣 = suc 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc suc 𝑢))
129, 11sseq12d 4000 . 2 (𝑣 = suc 𝑢 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)))
13 fveq2 6670 . . 3 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
14 suceq 6256 . . . 4 (𝑣 = 𝐴 → suc 𝑣 = suc 𝐴)
1514fveq2d 6674 . . 3 (𝑣 = 𝐴 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝐴))
1613, 15sseq12d 4000 . 2 (𝑣 = 𝐴 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹𝐴) ⊆ (𝐹‘suc 𝐴)))
17 inf3lem.1 . . . 4 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
18 inf3lem.2 . . . 4 𝐹 = (rec(𝐺, ∅) ↾ ω)
19 inf3lem.3 . . . 4 𝐴 ∈ V
2017, 18, 19, 19inf3lemb 9088 . . 3 (𝐹‘∅) = ∅
21 0ss 4350 . . 3 ∅ ⊆ (𝐹‘suc ∅)
2220, 21eqsstri 4001 . 2 (𝐹‘∅) ⊆ (𝐹‘suc ∅)
23 sstr2 3974 . . . . . . . 8 ((𝑣𝑥) ⊆ (𝐹𝑢) → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
2423com12 32 . . . . . . 7 ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣𝑥) ⊆ (𝐹𝑢) → (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
2524anim2d 613 . . . . . 6 ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢))))
26 vex 3497 . . . . . . . . . 10 𝑢 ∈ V
2717, 18, 26, 19inf3lemc 9089 . . . . . . . . 9 (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹𝑢)))
2827eleq2d 2898 . . . . . . . 8 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹𝑢))))
29 vex 3497 . . . . . . . . 9 𝑣 ∈ V
30 fvex 6683 . . . . . . . . 9 (𝐹𝑢) ∈ V
3117, 18, 29, 30inf3lema 9087 . . . . . . . 8 (𝑣 ∈ (𝐺‘(𝐹𝑢)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)))
3228, 31syl6bb 289 . . . . . . 7 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢))))
33 peano2b 7596 . . . . . . . . . 10 (𝑢 ∈ ω ↔ suc 𝑢 ∈ ω)
3426sucex 7526 . . . . . . . . . . 11 suc 𝑢 ∈ V
3517, 18, 34, 19inf3lemc 9089 . . . . . . . . . 10 (suc 𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢)))
3633, 35sylbi 219 . . . . . . . . 9 (𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢)))
3736eleq2d 2898 . . . . . . . 8 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢))))
38 fvex 6683 . . . . . . . . 9 (𝐹‘suc 𝑢) ∈ V
3917, 18, 29, 38inf3lema 9087 . . . . . . . 8 (𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
4037, 39syl6bb 289 . . . . . . 7 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢))))
4132, 40imbi12d 347 . . . . . 6 (𝑢 ∈ ω → ((𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)) ↔ ((𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))))
4225, 41syl5ibr 248 . . . . 5 (𝑢 ∈ ω → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢))))
4342imp 409 . . . 4 ((𝑢 ∈ ω ∧ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)))
4443ssrdv 3973 . . 3 ((𝑢 ∈ ω ∧ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢))
4544ex 415 . 2 (𝑢 ∈ ω → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)))
464, 8, 12, 16, 22, 45finds 7608 1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  cin 3935  wss 3936  c0 4291  cmpt 5146  cres 5557  suc csuc 6193  cfv 6355  ωcom 7580  reccrdg 8045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046
This theorem is referenced by:  inf3lem4  9094
  Copyright terms: Public domain W3C validator