MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem1 Structured version   Visualization version   GIF version

Theorem inf3lem1 9075
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9082 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem1
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . 3 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
2 suceq 6224 . . . 4 (𝑣 = ∅ → suc 𝑣 = suc ∅)
32fveq2d 6649 . . 3 (𝑣 = ∅ → (𝐹‘suc 𝑣) = (𝐹‘suc ∅))
41, 3sseq12d 3948 . 2 (𝑣 = ∅ → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘∅) ⊆ (𝐹‘suc ∅)))
5 fveq2 6645 . . 3 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
6 suceq 6224 . . . 4 (𝑣 = 𝑢 → suc 𝑣 = suc 𝑢)
76fveq2d 6649 . . 3 (𝑣 = 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝑢))
85, 7sseq12d 3948 . 2 (𝑣 = 𝑢 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)))
9 fveq2 6645 . . 3 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
10 suceq 6224 . . . 4 (𝑣 = suc 𝑢 → suc 𝑣 = suc suc 𝑢)
1110fveq2d 6649 . . 3 (𝑣 = suc 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc suc 𝑢))
129, 11sseq12d 3948 . 2 (𝑣 = suc 𝑢 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)))
13 fveq2 6645 . . 3 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
14 suceq 6224 . . . 4 (𝑣 = 𝐴 → suc 𝑣 = suc 𝐴)
1514fveq2d 6649 . . 3 (𝑣 = 𝐴 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝐴))
1613, 15sseq12d 3948 . 2 (𝑣 = 𝐴 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹𝐴) ⊆ (𝐹‘suc 𝐴)))
17 inf3lem.1 . . . 4 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
18 inf3lem.2 . . . 4 𝐹 = (rec(𝐺, ∅) ↾ ω)
19 inf3lem.3 . . . 4 𝐴 ∈ V
2017, 18, 19, 19inf3lemb 9072 . . 3 (𝐹‘∅) = ∅
21 0ss 4304 . . 3 ∅ ⊆ (𝐹‘suc ∅)
2220, 21eqsstri 3949 . 2 (𝐹‘∅) ⊆ (𝐹‘suc ∅)
23 sstr2 3922 . . . . . . . 8 ((𝑣𝑥) ⊆ (𝐹𝑢) → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
2423com12 32 . . . . . . 7 ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣𝑥) ⊆ (𝐹𝑢) → (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
2524anim2d 614 . . . . . 6 ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢))))
26 vex 3444 . . . . . . . . . 10 𝑢 ∈ V
2717, 18, 26, 19inf3lemc 9073 . . . . . . . . 9 (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹𝑢)))
2827eleq2d 2875 . . . . . . . 8 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹𝑢))))
29 vex 3444 . . . . . . . . 9 𝑣 ∈ V
30 fvex 6658 . . . . . . . . 9 (𝐹𝑢) ∈ V
3117, 18, 29, 30inf3lema 9071 . . . . . . . 8 (𝑣 ∈ (𝐺‘(𝐹𝑢)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)))
3228, 31syl6bb 290 . . . . . . 7 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢))))
33 peano2b 7576 . . . . . . . . . 10 (𝑢 ∈ ω ↔ suc 𝑢 ∈ ω)
3426sucex 7506 . . . . . . . . . . 11 suc 𝑢 ∈ V
3517, 18, 34, 19inf3lemc 9073 . . . . . . . . . 10 (suc 𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢)))
3633, 35sylbi 220 . . . . . . . . 9 (𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢)))
3736eleq2d 2875 . . . . . . . 8 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢))))
38 fvex 6658 . . . . . . . . 9 (𝐹‘suc 𝑢) ∈ V
3917, 18, 29, 38inf3lema 9071 . . . . . . . 8 (𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
4037, 39syl6bb 290 . . . . . . 7 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢))))
4132, 40imbi12d 348 . . . . . 6 (𝑢 ∈ ω → ((𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)) ↔ ((𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))))
4225, 41syl5ibr 249 . . . . 5 (𝑢 ∈ ω → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢))))
4342imp 410 . . . 4 ((𝑢 ∈ ω ∧ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)))
4443ssrdv 3921 . . 3 ((𝑢 ∈ ω ∧ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢))
4544ex 416 . 2 (𝑢 ∈ ω → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)))
464, 8, 12, 16, 22, 45finds 7589 1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cin 3880  wss 3881  c0 4243  cmpt 5110  cres 5521  suc csuc 6161  cfv 6324  ωcom 7560  reccrdg 8028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029
This theorem is referenced by:  inf3lem4  9078
  Copyright terms: Public domain W3C validator