Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem1 Structured version   Visualization version   GIF version

Theorem inf3lem1 8809
 Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8816 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem1
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6437 . . 3 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
2 suceq 6032 . . . 4 (𝑣 = ∅ → suc 𝑣 = suc ∅)
32fveq2d 6441 . . 3 (𝑣 = ∅ → (𝐹‘suc 𝑣) = (𝐹‘suc ∅))
41, 3sseq12d 3859 . 2 (𝑣 = ∅ → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘∅) ⊆ (𝐹‘suc ∅)))
5 fveq2 6437 . . 3 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
6 suceq 6032 . . . 4 (𝑣 = 𝑢 → suc 𝑣 = suc 𝑢)
76fveq2d 6441 . . 3 (𝑣 = 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝑢))
85, 7sseq12d 3859 . 2 (𝑣 = 𝑢 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)))
9 fveq2 6437 . . 3 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
10 suceq 6032 . . . 4 (𝑣 = suc 𝑢 → suc 𝑣 = suc suc 𝑢)
1110fveq2d 6441 . . 3 (𝑣 = suc 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc suc 𝑢))
129, 11sseq12d 3859 . 2 (𝑣 = suc 𝑢 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)))
13 fveq2 6437 . . 3 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
14 suceq 6032 . . . 4 (𝑣 = 𝐴 → suc 𝑣 = suc 𝐴)
1514fveq2d 6441 . . 3 (𝑣 = 𝐴 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝐴))
1613, 15sseq12d 3859 . 2 (𝑣 = 𝐴 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹𝐴) ⊆ (𝐹‘suc 𝐴)))
17 inf3lem.1 . . . 4 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
18 inf3lem.2 . . . 4 𝐹 = (rec(𝐺, ∅) ↾ ω)
19 inf3lem.3 . . . 4 𝐴 ∈ V
2017, 18, 19, 19inf3lemb 8806 . . 3 (𝐹‘∅) = ∅
21 0ss 4199 . . 3 ∅ ⊆ (𝐹‘suc ∅)
2220, 21eqsstri 3860 . 2 (𝐹‘∅) ⊆ (𝐹‘suc ∅)
23 sstr2 3834 . . . . . . . 8 ((𝑣𝑥) ⊆ (𝐹𝑢) → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
2423com12 32 . . . . . . 7 ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣𝑥) ⊆ (𝐹𝑢) → (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
2524anim2d 605 . . . . . 6 ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢))))
26 vex 3417 . . . . . . . . . 10 𝑢 ∈ V
2717, 18, 26, 19inf3lemc 8807 . . . . . . . . 9 (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹𝑢)))
2827eleq2d 2892 . . . . . . . 8 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹𝑢))))
29 vex 3417 . . . . . . . . 9 𝑣 ∈ V
30 fvex 6450 . . . . . . . . 9 (𝐹𝑢) ∈ V
3117, 18, 29, 30inf3lema 8805 . . . . . . . 8 (𝑣 ∈ (𝐺‘(𝐹𝑢)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)))
3228, 31syl6bb 279 . . . . . . 7 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢))))
33 peano2b 7347 . . . . . . . . . 10 (𝑢 ∈ ω ↔ suc 𝑢 ∈ ω)
3426sucex 7277 . . . . . . . . . . 11 suc 𝑢 ∈ V
3517, 18, 34, 19inf3lemc 8807 . . . . . . . . . 10 (suc 𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢)))
3633, 35sylbi 209 . . . . . . . . 9 (𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢)))
3736eleq2d 2892 . . . . . . . 8 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢))))
38 fvex 6450 . . . . . . . . 9 (𝐹‘suc 𝑢) ∈ V
3917, 18, 29, 38inf3lema 8805 . . . . . . . 8 (𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
4037, 39syl6bb 279 . . . . . . 7 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢))))
4132, 40imbi12d 336 . . . . . 6 (𝑢 ∈ ω → ((𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)) ↔ ((𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))))
4225, 41syl5ibr 238 . . . . 5 (𝑢 ∈ ω → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢))))
4342imp 397 . . . 4 ((𝑢 ∈ ω ∧ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)))
4443ssrdv 3833 . . 3 ((𝑢 ∈ ω ∧ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢))
4544ex 403 . 2 (𝑢 ∈ ω → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)))
464, 8, 12, 16, 22, 45finds 7358 1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1656   ∈ wcel 2164  {crab 3121  Vcvv 3414   ∩ cin 3797   ⊆ wss 3798  ∅c0 4146   ↦ cmpt 4954   ↾ cres 5348  suc csuc 5969  ‘cfv 6127  ωcom 7331  reccrdg 7776 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777 This theorem is referenced by:  inf3lem4  8812
 Copyright terms: Public domain W3C validator