![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tcss | Structured version Visualization version GIF version |
Description: The transitive closure function inherits the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.) |
Ref | Expression |
---|---|
tc2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tcss | ⊢ (𝐵 ⊆ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tc2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | ssex 5339 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 ∈ V) |
3 | tcvalg 9809 | . . 3 ⊢ (𝐵 ∈ V → (TC‘𝐵) = ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐵 ⊆ 𝐴 → (TC‘𝐵) = ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) |
5 | sstr2 4015 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝑥 → 𝐵 ⊆ 𝑥)) | |
6 | 5 | anim1d 610 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → (𝐵 ⊆ 𝑥 ∧ Tr 𝑥))) |
7 | 6 | ss2abdv 4089 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) |
8 | intss 4993 | . . . 4 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
10 | tcvalg 9809 | . . . 4 ⊢ (𝐴 ∈ V → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
11 | 1, 10 | ax-mp 5 | . . 3 ⊢ (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} |
12 | 9, 11 | sseqtrrdi 4060 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ (TC‘𝐴)) |
13 | 4, 12 | eqsstrd 4047 | 1 ⊢ (𝐵 ⊆ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 ⊆ wss 3976 ∩ cint 4970 Tr wtr 5283 ‘cfv 6575 TCctc 9807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 ax-inf2 9712 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-tc 9808 |
This theorem is referenced by: hsmexlem4 10500 |
Copyright terms: Public domain | W3C validator |