Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tcss | Structured version Visualization version GIF version |
Description: The transitive closure function inherits the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.) |
Ref | Expression |
---|---|
tc2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tcss | ⊢ (𝐵 ⊆ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tc2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | ssex 5248 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 ∈ V) |
3 | tcvalg 9479 | . . 3 ⊢ (𝐵 ∈ V → (TC‘𝐵) = ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐵 ⊆ 𝐴 → (TC‘𝐵) = ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) |
5 | sstr2 3932 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝑥 → 𝐵 ⊆ 𝑥)) | |
6 | 5 | anim1d 610 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → (𝐵 ⊆ 𝑥 ∧ Tr 𝑥))) |
7 | 6 | ss2abdv 4001 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) |
8 | intss 4905 | . . . 4 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
10 | tcvalg 9479 | . . . 4 ⊢ (𝐴 ∈ V → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
11 | 1, 10 | ax-mp 5 | . . 3 ⊢ (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} |
12 | 9, 11 | sseqtrrdi 3976 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ (TC‘𝐴)) |
13 | 4, 12 | eqsstrd 3963 | 1 ⊢ (𝐵 ⊆ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 Vcvv 3430 ⊆ wss 3891 ∩ cint 4884 Tr wtr 5195 ‘cfv 6430 TCctc 9477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-inf2 9360 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-tc 9478 |
This theorem is referenced by: hsmexlem4 10169 |
Copyright terms: Public domain | W3C validator |