| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > spanss | Structured version Visualization version GIF version | ||
| Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spanss | ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3970 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝑥 → 𝐴 ⊆ 𝑥)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Sℋ ) → (𝐵 ⊆ 𝑥 → 𝐴 ⊆ 𝑥)) |
| 3 | 2 | ss2rabdv 4056 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥} ⊆ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 4 | intss 4950 | . . . 4 ⊢ ({𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥} ⊆ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
| 7 | sstr 3972 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℋ) → 𝐴 ⊆ ℋ) | |
| 8 | 7 | ancoms 458 | . . 3 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ ℋ) |
| 9 | spanval 31319 | . . 3 ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 11 | spanval 31319 | . . 3 ⊢ (𝐵 ⊆ ℋ → (span‘𝐵) = ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) | |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐵) = ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
| 13 | 6, 10, 12 | 3sstr4d 4019 | 1 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 ⊆ wss 3931 ∩ cint 4927 ‘cfv 6536 ℋchba 30905 Sℋ csh 30914 spancspn 30918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 ax-hilex 30985 ax-hfvadd 30986 ax-hv0cl 30989 ax-hfvmul 30991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-map 8847 df-nn 12246 df-hlim 30958 df-sh 31193 df-ch 31207 df-span 31295 |
| This theorem is referenced by: spanssoc 31335 span0 31528 spanuni 31530 spansnpji 31564 shatomistici 32347 |
| Copyright terms: Public domain | W3C validator |