![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > spanss | Structured version Visualization version GIF version |
Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spanss | β’ ((π΅ β β β§ π΄ β π΅) β (spanβπ΄) β (spanβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3984 | . . . . . 6 β’ (π΄ β π΅ β (π΅ β π₯ β π΄ β π₯)) | |
2 | 1 | adantr 480 | . . . . 5 β’ ((π΄ β π΅ β§ π₯ β Sβ ) β (π΅ β π₯ β π΄ β π₯)) |
3 | 2 | ss2rabdv 4068 | . . . 4 β’ (π΄ β π΅ β {π₯ β Sβ β£ π΅ β π₯} β {π₯ β Sβ β£ π΄ β π₯}) |
4 | intss 4966 | . . . 4 β’ ({π₯ β Sβ β£ π΅ β π₯} β {π₯ β Sβ β£ π΄ β π₯} β β© {π₯ β Sβ β£ π΄ β π₯} β β© {π₯ β Sβ β£ π΅ β π₯}) | |
5 | 3, 4 | syl 17 | . . 3 β’ (π΄ β π΅ β β© {π₯ β Sβ β£ π΄ β π₯} β β© {π₯ β Sβ β£ π΅ β π₯}) |
6 | 5 | adantl 481 | . 2 β’ ((π΅ β β β§ π΄ β π΅) β β© {π₯ β Sβ β£ π΄ β π₯} β β© {π₯ β Sβ β£ π΅ β π₯}) |
7 | sstr 3985 | . . . 4 β’ ((π΄ β π΅ β§ π΅ β β) β π΄ β β) | |
8 | 7 | ancoms 458 | . . 3 β’ ((π΅ β β β§ π΄ β π΅) β π΄ β β) |
9 | spanval 31091 | . . 3 β’ (π΄ β β β (spanβπ΄) = β© {π₯ β Sβ β£ π΄ β π₯}) | |
10 | 8, 9 | syl 17 | . 2 β’ ((π΅ β β β§ π΄ β π΅) β (spanβπ΄) = β© {π₯ β Sβ β£ π΄ β π₯}) |
11 | spanval 31091 | . . 3 β’ (π΅ β β β (spanβπ΅) = β© {π₯ β Sβ β£ π΅ β π₯}) | |
12 | 11 | adantr 480 | . 2 β’ ((π΅ β β β§ π΄ β π΅) β (spanβπ΅) = β© {π₯ β Sβ β£ π΅ β π₯}) |
13 | 6, 10, 12 | 3sstr4d 4024 | 1 β’ ((π΅ β β β§ π΄ β π΅) β (spanβπ΄) β (spanβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 {crab 3426 β wss 3943 β© cint 4943 βcfv 6536 βchba 30677 Sβ csh 30686 spancspn 30690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 ax-hilex 30757 ax-hfvadd 30758 ax-hv0cl 30761 ax-hfvmul 30763 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-map 8821 df-nn 12214 df-hlim 30730 df-sh 30965 df-ch 30979 df-span 31067 |
This theorem is referenced by: spanssoc 31107 span0 31300 spanuni 31302 spansnpji 31336 shatomistici 32119 |
Copyright terms: Public domain | W3C validator |