| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > spanss | Structured version Visualization version GIF version | ||
| Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spanss | ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3936 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝑥 → 𝐴 ⊆ 𝑥)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Sℋ ) → (𝐵 ⊆ 𝑥 → 𝐴 ⊆ 𝑥)) |
| 3 | 2 | ss2rabdv 4021 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥} ⊆ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 4 | intss 4917 | . . . 4 ⊢ ({𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥} ⊆ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
| 7 | sstr 3938 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℋ) → 𝐴 ⊆ ℋ) | |
| 8 | 7 | ancoms 458 | . . 3 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ ℋ) |
| 9 | spanval 31313 | . . 3 ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 11 | spanval 31313 | . . 3 ⊢ (𝐵 ⊆ ℋ → (span‘𝐵) = ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) | |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐵) = ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
| 13 | 6, 10, 12 | 3sstr4d 3985 | 1 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 ∩ cint 4895 ‘cfv 6481 ℋchba 30899 Sℋ csh 30908 spancspn 30912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 ax-hilex 30979 ax-hfvadd 30980 ax-hv0cl 30983 ax-hfvmul 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-map 8752 df-nn 12126 df-hlim 30952 df-sh 31187 df-ch 31201 df-span 31289 |
| This theorem is referenced by: spanssoc 31329 span0 31522 spanuni 31524 spansnpji 31558 shatomistici 32341 |
| Copyright terms: Public domain | W3C validator |