![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > spanss | Structured version Visualization version GIF version |
Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spanss | ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 4001 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝑥 → 𝐴 ⊆ 𝑥)) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Sℋ ) → (𝐵 ⊆ 𝑥 → 𝐴 ⊆ 𝑥)) |
3 | 2 | ss2rabdv 4085 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥} ⊆ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
4 | intss 4973 | . . . 4 ⊢ ({𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥} ⊆ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
7 | sstr 4003 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℋ) → 𝐴 ⊆ ℋ) | |
8 | 7 | ancoms 458 | . . 3 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ ℋ) |
9 | spanval 31361 | . . 3 ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
11 | spanval 31361 | . . 3 ⊢ (𝐵 ⊆ ℋ → (span‘𝐵) = ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) | |
12 | 11 | adantr 480 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐵) = ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
13 | 6, 10, 12 | 3sstr4d 4042 | 1 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {crab 3432 ⊆ wss 3962 ∩ cint 4950 ‘cfv 6562 ℋchba 30947 Sℋ csh 30956 spancspn 30960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-1cn 11210 ax-addcl 11212 ax-hilex 31027 ax-hfvadd 31028 ax-hv0cl 31031 ax-hfvmul 31033 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-map 8866 df-nn 12264 df-hlim 31000 df-sh 31235 df-ch 31249 df-span 31337 |
This theorem is referenced by: spanssoc 31377 span0 31570 spanuni 31572 spansnpji 31606 shatomistici 32389 |
Copyright terms: Public domain | W3C validator |