| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > spanss | Structured version Visualization version GIF version | ||
| Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spanss | ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3956 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝑥 → 𝐴 ⊆ 𝑥)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Sℋ ) → (𝐵 ⊆ 𝑥 → 𝐴 ⊆ 𝑥)) |
| 3 | 2 | ss2rabdv 4042 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥} ⊆ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 4 | intss 4936 | . . . 4 ⊢ ({𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥} ⊆ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
| 7 | sstr 3958 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℋ) → 𝐴 ⊆ ℋ) | |
| 8 | 7 | ancoms 458 | . . 3 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ ℋ) |
| 9 | spanval 31269 | . . 3 ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 11 | spanval 31269 | . . 3 ⊢ (𝐵 ⊆ ℋ → (span‘𝐵) = ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) | |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐵) = ∩ {𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥}) |
| 13 | 6, 10, 12 | 3sstr4d 4005 | 1 ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 ∩ cint 4913 ‘cfv 6514 ℋchba 30855 Sℋ csh 30864 spancspn 30868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 ax-hilex 30935 ax-hfvadd 30936 ax-hv0cl 30939 ax-hfvmul 30941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-map 8804 df-nn 12194 df-hlim 30908 df-sh 31143 df-ch 31157 df-span 31245 |
| This theorem is referenced by: spanssoc 31285 span0 31478 spanuni 31480 spansnpji 31514 shatomistici 32297 |
| Copyright terms: Public domain | W3C validator |