HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanss Structured version   Visualization version   GIF version

Theorem spanss 31380
Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
spanss ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → (span‘𝐴) ⊆ (span‘𝐵))

Proof of Theorem spanss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 4015 . . . . . 6 (𝐴𝐵 → (𝐵𝑥𝐴𝑥))
21adantr 480 . . . . 5 ((𝐴𝐵𝑥S ) → (𝐵𝑥𝐴𝑥))
32ss2rabdv 4099 . . . 4 (𝐴𝐵 → {𝑥S𝐵𝑥} ⊆ {𝑥S𝐴𝑥})
4 intss 4993 . . . 4 ({𝑥S𝐵𝑥} ⊆ {𝑥S𝐴𝑥} → {𝑥S𝐴𝑥} ⊆ {𝑥S𝐵𝑥})
53, 4syl 17 . . 3 (𝐴𝐵 {𝑥S𝐴𝑥} ⊆ {𝑥S𝐵𝑥})
65adantl 481 . 2 ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → {𝑥S𝐴𝑥} ⊆ {𝑥S𝐵𝑥})
7 sstr 4017 . . . 4 ((𝐴𝐵𝐵 ⊆ ℋ) → 𝐴 ⊆ ℋ)
87ancoms 458 . . 3 ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → 𝐴 ⊆ ℋ)
9 spanval 31365 . . 3 (𝐴 ⊆ ℋ → (span‘𝐴) = {𝑥S𝐴𝑥})
108, 9syl 17 . 2 ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → (span‘𝐴) = {𝑥S𝐴𝑥})
11 spanval 31365 . . 3 (𝐵 ⊆ ℋ → (span‘𝐵) = {𝑥S𝐵𝑥})
1211adantr 480 . 2 ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → (span‘𝐵) = {𝑥S𝐵𝑥})
136, 10, 123sstr4d 4056 1 ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → (span‘𝐴) ⊆ (span‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  wss 3976   cint 4970  cfv 6573  chba 30951   S csh 30960  spancspn 30964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244  ax-hilex 31031  ax-hfvadd 31032  ax-hv0cl 31035  ax-hfvmul 31037
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-nn 12294  df-hlim 31004  df-sh 31239  df-ch 31253  df-span 31341
This theorem is referenced by:  spanssoc  31381  span0  31574  spanuni  31576  spansnpji  31610  shatomistici  32393
  Copyright terms: Public domain W3C validator