Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clsss | Structured version Visualization version GIF version |
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3928 | . . . . . 6 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥)) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝑇 ⊆ 𝑆 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥)) |
3 | 2 | ss2rabdv 4009 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
4 | intss 4900 | . . . 4 ⊢ ({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
6 | 5 | 3ad2ant3 1134 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
7 | simp1 1135 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝐽 ∈ Top) | |
8 | sstr2 3928 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋)) | |
9 | 8 | impcom 408 | . . . 4 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
10 | 9 | 3adant1 1129 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
11 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
12 | 11 | clsval 22188 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((cls‘𝐽)‘𝑇) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
13 | 7, 10, 12 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
14 | 11 | clsval 22188 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
15 | 14 | 3adant3 1131 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
16 | 6, 13, 15 | 3sstr4d 3968 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∪ cuni 4839 ∩ cint 4879 ‘cfv 6433 Topctop 22042 Clsdccld 22167 clsccl 22169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-cld 22170 df-cls 22172 |
This theorem is referenced by: ntrss 22206 clsss2 22223 lpsscls 22292 lpss3 22295 cnclsi 22423 cncls 22425 lpcls 22515 cnextcn 23218 clssubg 23260 clsnsg 23261 utopreg 23404 hauseqcn 31848 kur14lem6 33173 clsint2 34518 opnregcld 34519 |
Copyright terms: Public domain | W3C validator |