MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss Structured version   Visualization version   GIF version

Theorem clsss 22964
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem clsss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3936 . . . . . 6 (𝑇𝑆 → (𝑆𝑥𝑇𝑥))
21adantr 480 . . . . 5 ((𝑇𝑆𝑥 ∈ (Clsd‘𝐽)) → (𝑆𝑥𝑇𝑥))
32ss2rabdv 4021 . . . 4 (𝑇𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
4 intss 4914 . . . 4 ({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
53, 4syl 17 . . 3 (𝑇𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
653ad2ant3 1135 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
7 simp1 1136 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
8 sstr2 3936 . . . . 5 (𝑇𝑆 → (𝑆𝑋𝑇𝑋))
98impcom 407 . . . 4 ((𝑆𝑋𝑇𝑆) → 𝑇𝑋)
1093adant1 1130 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
11 clscld.1 . . . 4 𝑋 = 𝐽
1211clsval 22947 . . 3 ((𝐽 ∈ Top ∧ 𝑇𝑋) → ((cls‘𝐽)‘𝑇) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
137, 10, 12syl2anc 584 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
1411clsval 22947 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
15143adant3 1132 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
166, 13, 153sstr4d 3985 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  wss 3897   cuni 4854   cint 4892  cfv 6476  Topctop 22803  Clsdccld 22926  clsccl 22928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-top 22804  df-cld 22929  df-cls 22931
This theorem is referenced by:  ntrss  22965  clsss2  22982  lpsscls  23051  lpss3  23054  cnclsi  23182  cncls  23184  lpcls  23274  cnextcn  23977  clssubg  24019  clsnsg  24020  utopreg  24162  hauseqcn  33903  kur14lem6  35247  clsint2  36363  opnregcld  36364
  Copyright terms: Public domain W3C validator