| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3936 | . . . . . 6 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑇 ⊆ 𝑆 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥)) |
| 3 | 2 | ss2rabdv 4021 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
| 4 | intss 4914 | . . . 4 ⊢ ({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 6 | 5 | 3ad2ant3 1135 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 7 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝐽 ∈ Top) | |
| 8 | sstr2 3936 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋)) | |
| 9 | 8 | impcom 407 | . . . 4 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 10 | 9 | 3adant1 1130 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 11 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 12 | 11 | clsval 22947 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((cls‘𝐽)‘𝑇) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
| 13 | 7, 10, 12 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
| 14 | 11 | clsval 22947 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 15 | 14 | 3adant3 1132 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 16 | 6, 13, 15 | 3sstr4d 3985 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 ∪ cuni 4854 ∩ cint 4892 ‘cfv 6476 Topctop 22803 Clsdccld 22926 clsccl 22928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-top 22804 df-cld 22929 df-cls 22931 |
| This theorem is referenced by: ntrss 22965 clsss2 22982 lpsscls 23051 lpss3 23054 cnclsi 23182 cncls 23184 lpcls 23274 cnextcn 23977 clssubg 24019 clsnsg 24020 utopreg 24162 hauseqcn 33903 kur14lem6 35247 clsint2 36363 opnregcld 36364 |
| Copyright terms: Public domain | W3C validator |