| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3950 | . . . . . 6 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑇 ⊆ 𝑆 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥)) |
| 3 | 2 | ss2rabdv 4035 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
| 4 | intss 4929 | . . . 4 ⊢ ({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 6 | 5 | 3ad2ant3 1135 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 7 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝐽 ∈ Top) | |
| 8 | sstr2 3950 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋)) | |
| 9 | 8 | impcom 407 | . . . 4 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 10 | 9 | 3adant1 1130 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 11 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 12 | 11 | clsval 22900 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((cls‘𝐽)‘𝑇) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
| 13 | 7, 10, 12 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
| 14 | 11 | clsval 22900 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 15 | 14 | 3adant3 1132 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 16 | 6, 13, 15 | 3sstr4d 3999 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3402 ⊆ wss 3911 ∪ cuni 4867 ∩ cint 4906 ‘cfv 6499 Topctop 22756 Clsdccld 22879 clsccl 22881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-top 22757 df-cld 22882 df-cls 22884 |
| This theorem is referenced by: ntrss 22918 clsss2 22935 lpsscls 23004 lpss3 23007 cnclsi 23135 cncls 23137 lpcls 23227 cnextcn 23930 clssubg 23972 clsnsg 23973 utopreg 24116 hauseqcn 33861 kur14lem6 35171 clsint2 36290 opnregcld 36291 |
| Copyright terms: Public domain | W3C validator |