MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss Structured version   Visualization version   GIF version

Theorem clsss 22992
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem clsss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3965 . . . . . 6 (𝑇𝑆 → (𝑆𝑥𝑇𝑥))
21adantr 480 . . . . 5 ((𝑇𝑆𝑥 ∈ (Clsd‘𝐽)) → (𝑆𝑥𝑇𝑥))
32ss2rabdv 4051 . . . 4 (𝑇𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
4 intss 4945 . . . 4 ({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
53, 4syl 17 . . 3 (𝑇𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
653ad2ant3 1135 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
7 simp1 1136 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
8 sstr2 3965 . . . . 5 (𝑇𝑆 → (𝑆𝑋𝑇𝑋))
98impcom 407 . . . 4 ((𝑆𝑋𝑇𝑆) → 𝑇𝑋)
1093adant1 1130 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
11 clscld.1 . . . 4 𝑋 = 𝐽
1211clsval 22975 . . 3 ((𝐽 ∈ Top ∧ 𝑇𝑋) → ((cls‘𝐽)‘𝑇) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
137, 10, 12syl2anc 584 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
1411clsval 22975 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
15143adant3 1132 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
166, 13, 153sstr4d 4014 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  wss 3926   cuni 4883   cint 4922  cfv 6531  Topctop 22831  Clsdccld 22954  clsccl 22956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-top 22832  df-cld 22957  df-cls 22959
This theorem is referenced by:  ntrss  22993  clsss2  23010  lpsscls  23079  lpss3  23082  cnclsi  23210  cncls  23212  lpcls  23302  cnextcn  24005  clssubg  24047  clsnsg  24048  utopreg  24191  hauseqcn  33929  kur14lem6  35233  clsint2  36347  opnregcld  36348
  Copyright terms: Public domain W3C validator