MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss Structured version   Visualization version   GIF version

Theorem clsss 23083
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem clsss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 4015 . . . . . 6 (𝑇𝑆 → (𝑆𝑥𝑇𝑥))
21adantr 480 . . . . 5 ((𝑇𝑆𝑥 ∈ (Clsd‘𝐽)) → (𝑆𝑥𝑇𝑥))
32ss2rabdv 4099 . . . 4 (𝑇𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
4 intss 4993 . . . 4 ({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
53, 4syl 17 . . 3 (𝑇𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
653ad2ant3 1135 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
7 simp1 1136 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
8 sstr2 4015 . . . . 5 (𝑇𝑆 → (𝑆𝑋𝑇𝑋))
98impcom 407 . . . 4 ((𝑆𝑋𝑇𝑆) → 𝑇𝑋)
1093adant1 1130 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
11 clscld.1 . . . 4 𝑋 = 𝐽
1211clsval 23066 . . 3 ((𝐽 ∈ Top ∧ 𝑇𝑋) → ((cls‘𝐽)‘𝑇) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
137, 10, 12syl2anc 583 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
1411clsval 23066 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
15143adant3 1132 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
166, 13, 153sstr4d 4056 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  wss 3976   cuni 4931   cint 4970  cfv 6573  Topctop 22920  Clsdccld 23045  clsccl 23047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-cls 23050
This theorem is referenced by:  ntrss  23084  clsss2  23101  lpsscls  23170  lpss3  23173  cnclsi  23301  cncls  23303  lpcls  23393  cnextcn  24096  clssubg  24138  clsnsg  24139  utopreg  24282  hauseqcn  33844  kur14lem6  35179  clsint2  36295  opnregcld  36296
  Copyright terms: Public domain W3C validator