Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclssN | Structured version Visualization version GIF version |
Description: Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclss.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclssN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3924 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑌 → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) | |
2 | 1 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) |
3 | 2 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑦 ∈ (PSubSp‘𝐾)) → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) |
4 | 3 | ss2rabdv 4005 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
5 | intss 4897 | . . 3 ⊢ ({𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} → ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} ⊆ ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} ⊆ ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
7 | simp1 1134 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝐾 ∈ 𝑉) | |
8 | sstr 3925 | . . . 4 ⊢ ((𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) | |
9 | 8 | 3adant1 1128 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) |
10 | pclss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | eqid 2738 | . . . 4 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
12 | pclss.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
13 | 10, 11, 12 | pclvalN 37831 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
14 | 7, 9, 13 | syl2anc 583 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
15 | 10, 11, 12 | pclvalN 37831 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑌) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
16 | 15 | 3adant2 1129 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑌) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
17 | 6, 14, 16 | 3sstr4d 3964 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ∩ cint 4876 ‘cfv 6418 Atomscatm 37204 PSubSpcpsubsp 37437 PClcpclN 37828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-psubsp 37444 df-pclN 37829 |
This theorem is referenced by: pclbtwnN 37838 pclunN 37839 pclfinN 37841 pclss2polN 37862 pclfinclN 37891 |
Copyright terms: Public domain | W3C validator |