![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclssN | Structured version Visualization version GIF version |
Description: Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclss.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclssN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 4015 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑌 → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) | |
2 | 1 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) |
3 | 2 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑦 ∈ (PSubSp‘𝐾)) → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) |
4 | 3 | ss2rabdv 4099 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
5 | intss 4993 | . . 3 ⊢ ({𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} → ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} ⊆ ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} ⊆ ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
7 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝐾 ∈ 𝑉) | |
8 | sstr 4017 | . . . 4 ⊢ ((𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) | |
9 | 8 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) |
10 | pclss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | eqid 2740 | . . . 4 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
12 | pclss.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
13 | 10, 11, 12 | pclvalN 39847 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
14 | 7, 9, 13 | syl2anc 583 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
15 | 10, 11, 12 | pclvalN 39847 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑌) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
16 | 15 | 3adant2 1131 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑌) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
17 | 6, 14, 16 | 3sstr4d 4056 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 ∩ cint 4970 ‘cfv 6573 Atomscatm 39219 PSubSpcpsubsp 39453 PClcpclN 39844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-psubsp 39460 df-pclN 39845 |
This theorem is referenced by: pclbtwnN 39854 pclunN 39855 pclfinN 39857 pclss2polN 39878 pclfinclN 39907 |
Copyright terms: Public domain | W3C validator |