Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclssN Structured version   Visualization version   GIF version

Theorem pclssN 39895
Description: Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss.a 𝐴 = (Atoms‘𝐾)
pclss.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclssN ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑋) ⊆ (𝑈𝑌))

Proof of Theorem pclssN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3956 . . . . . 6 (𝑋𝑌 → (𝑌𝑦𝑋𝑦))
213ad2ant2 1134 . . . . 5 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑌𝑦𝑋𝑦))
32adantr 480 . . . 4 (((𝐾𝑉𝑋𝑌𝑌𝐴) ∧ 𝑦 ∈ (PSubSp‘𝐾)) → (𝑌𝑦𝑋𝑦))
43ss2rabdv 4042 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝐴) → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
5 intss 4936 . . 3 ({𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦} → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
64, 5syl 17 . 2 ((𝐾𝑉𝑋𝑌𝑌𝐴) → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
7 simp1 1136 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝐴) → 𝐾𝑉)
8 sstr 3958 . . . 4 ((𝑋𝑌𝑌𝐴) → 𝑋𝐴)
983adant1 1130 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝐴) → 𝑋𝐴)
10 pclss.a . . . 4 𝐴 = (Atoms‘𝐾)
11 eqid 2730 . . . 4 (PSubSp‘𝐾) = (PSubSp‘𝐾)
12 pclss.c . . . 4 𝑈 = (PCl‘𝐾)
1310, 11, 12pclvalN 39891 . . 3 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
147, 9, 13syl2anc 584 . 2 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑋) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
1510, 11, 12pclvalN 39891 . . 3 ((𝐾𝑉𝑌𝐴) → (𝑈𝑌) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
16153adant2 1131 . 2 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑌) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
176, 14, 163sstr4d 4005 1 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑋) ⊆ (𝑈𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  wss 3917   cint 4913  cfv 6514  Atomscatm 39263  PSubSpcpsubsp 39497  PClcpclN 39888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-psubsp 39504  df-pclN 39889
This theorem is referenced by:  pclbtwnN  39898  pclunN  39899  pclfinN  39901  pclss2polN  39922  pclfinclN  39951
  Copyright terms: Public domain W3C validator