Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclssN Structured version   Visualization version   GIF version

Theorem pclssN 39834
Description: Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss.a 𝐴 = (Atoms‘𝐾)
pclss.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclssN ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑋) ⊆ (𝑈𝑌))

Proof of Theorem pclssN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3963 . . . . . 6 (𝑋𝑌 → (𝑌𝑦𝑋𝑦))
213ad2ant2 1134 . . . . 5 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑌𝑦𝑋𝑦))
32adantr 480 . . . 4 (((𝐾𝑉𝑋𝑌𝑌𝐴) ∧ 𝑦 ∈ (PSubSp‘𝐾)) → (𝑌𝑦𝑋𝑦))
43ss2rabdv 4049 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝐴) → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
5 intss 4942 . . 3 ({𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦} → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
64, 5syl 17 . 2 ((𝐾𝑉𝑋𝑌𝑌𝐴) → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
7 simp1 1136 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝐴) → 𝐾𝑉)
8 sstr 3965 . . . 4 ((𝑋𝑌𝑌𝐴) → 𝑋𝐴)
983adant1 1130 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝐴) → 𝑋𝐴)
10 pclss.a . . . 4 𝐴 = (Atoms‘𝐾)
11 eqid 2734 . . . 4 (PSubSp‘𝐾) = (PSubSp‘𝐾)
12 pclss.c . . . 4 𝑈 = (PCl‘𝐾)
1310, 11, 12pclvalN 39830 . . 3 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
147, 9, 13syl2anc 584 . 2 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑋) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
1510, 11, 12pclvalN 39830 . . 3 ((𝐾𝑉𝑌𝐴) → (𝑈𝑌) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
16153adant2 1131 . 2 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑌) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
176, 14, 163sstr4d 4012 1 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑋) ⊆ (𝑈𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  {crab 3413  wss 3924   cint 4919  cfv 6527  Atomscatm 39202  PSubSpcpsubsp 39436  PClcpclN 39827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-psubsp 39443  df-pclN 39828
This theorem is referenced by:  pclbtwnN  39837  pclunN  39838  pclfinN  39840  pclss2polN  39861  pclfinclN  39890
  Copyright terms: Public domain W3C validator