Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclssN Structured version   Visualization version   GIF version

Theorem pclssN 39229
Description: Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss.a 𝐴 = (Atoms‘𝐾)
pclss.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclssN ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑋) ⊆ (𝑈𝑌))

Proof of Theorem pclssN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3989 . . . . . 6 (𝑋𝑌 → (𝑌𝑦𝑋𝑦))
213ad2ant2 1133 . . . . 5 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑌𝑦𝑋𝑦))
32adantr 480 . . . 4 (((𝐾𝑉𝑋𝑌𝑌𝐴) ∧ 𝑦 ∈ (PSubSp‘𝐾)) → (𝑌𝑦𝑋𝑦))
43ss2rabdv 4073 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝐴) → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
5 intss 4973 . . 3 ({𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦} → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
64, 5syl 17 . 2 ((𝐾𝑉𝑋𝑌𝑌𝐴) → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
7 simp1 1135 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝐴) → 𝐾𝑉)
8 sstr 3990 . . . 4 ((𝑋𝑌𝑌𝐴) → 𝑋𝐴)
983adant1 1129 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝐴) → 𝑋𝐴)
10 pclss.a . . . 4 𝐴 = (Atoms‘𝐾)
11 eqid 2731 . . . 4 (PSubSp‘𝐾) = (PSubSp‘𝐾)
12 pclss.c . . . 4 𝑈 = (PCl‘𝐾)
1310, 11, 12pclvalN 39225 . . 3 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
147, 9, 13syl2anc 583 . 2 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑋) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
1510, 11, 12pclvalN 39225 . . 3 ((𝐾𝑉𝑌𝐴) → (𝑈𝑌) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
16153adant2 1130 . 2 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑌) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌𝑦})
176, 14, 163sstr4d 4029 1 ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑋) ⊆ (𝑈𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  {crab 3431  wss 3948   cint 4950  cfv 6543  Atomscatm 38597  PSubSpcpsubsp 38831  PClcpclN 39222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-psubsp 38838  df-pclN 39223
This theorem is referenced by:  pclbtwnN  39232  pclunN  39233  pclfinN  39235  pclss2polN  39256  pclfinclN  39285
  Copyright terms: Public domain W3C validator