| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclssN | Structured version Visualization version GIF version | ||
| Description: Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pclss.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclssN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3953 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑌 → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) | |
| 2 | 1 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) |
| 3 | 2 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑦 ∈ (PSubSp‘𝐾)) → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) |
| 4 | 3 | ss2rabdv 4039 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
| 5 | intss 4933 | . . 3 ⊢ ({𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} → ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} ⊆ ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} ⊆ ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
| 7 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝐾 ∈ 𝑉) | |
| 8 | sstr 3955 | . . . 4 ⊢ ((𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) | |
| 9 | 8 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) |
| 10 | pclss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 11 | eqid 2729 | . . . 4 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
| 12 | pclss.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
| 13 | 10, 11, 12 | pclvalN 39884 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
| 14 | 7, 9, 13 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
| 15 | 10, 11, 12 | pclvalN 39884 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑌) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
| 16 | 15 | 3adant2 1131 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑌) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
| 17 | 6, 14, 16 | 3sstr4d 4002 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 ∩ cint 4910 ‘cfv 6511 Atomscatm 39256 PSubSpcpsubsp 39490 PClcpclN 39881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-psubsp 39497 df-pclN 39882 |
| This theorem is referenced by: pclbtwnN 39891 pclunN 39892 pclfinN 39894 pclss2polN 39915 pclfinclN 39944 |
| Copyright terms: Public domain | W3C validator |