MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcss Structured version   Visualization version   GIF version

Theorem mrcss 17674
Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcss ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝐹𝑈) ⊆ (𝐹𝑉))

Proof of Theorem mrcss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sstr2 4015 . . . . . 6 (𝑈𝑉 → (𝑉𝑠𝑈𝑠))
21adantr 480 . . . . 5 ((𝑈𝑉𝑠𝐶) → (𝑉𝑠𝑈𝑠))
32ss2rabdv 4099 . . . 4 (𝑈𝑉 → {𝑠𝐶𝑉𝑠} ⊆ {𝑠𝐶𝑈𝑠})
4 intss 4993 . . . 4 ({𝑠𝐶𝑉𝑠} ⊆ {𝑠𝐶𝑈𝑠} → {𝑠𝐶𝑈𝑠} ⊆ {𝑠𝐶𝑉𝑠})
53, 4syl 17 . . 3 (𝑈𝑉 {𝑠𝐶𝑈𝑠} ⊆ {𝑠𝐶𝑉𝑠})
653ad2ant2 1134 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → {𝑠𝐶𝑈𝑠} ⊆ {𝑠𝐶𝑉𝑠})
7 simp1 1136 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → 𝐶 ∈ (Moore‘𝑋))
8 sstr 4017 . . . 4 ((𝑈𝑉𝑉𝑋) → 𝑈𝑋)
983adant1 1130 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → 𝑈𝑋)
10 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
1110mrcval 17668 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
127, 9, 11syl2anc 583 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
1310mrcval 17668 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉𝑋) → (𝐹𝑉) = {𝑠𝐶𝑉𝑠})
14133adant2 1131 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝐹𝑉) = {𝑠𝐶𝑉𝑠})
156, 12, 143sstr4d 4056 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝐹𝑈) ⊆ (𝐹𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  wss 3976   cint 4970  cfv 6573  Moorecmre 17640  mrClscmrc 17641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-mre 17644  df-mrc 17645
This theorem is referenced by:  mrcsscl  17678  mrcuni  17679  mrcssd  17682  ismrc  42657  isnacs3  42666
  Copyright terms: Public domain W3C validator