MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcss Structured version   Visualization version   GIF version

Theorem mrcss 17325
Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcss ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝐹𝑈) ⊆ (𝐹𝑉))

Proof of Theorem mrcss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3928 . . . . . 6 (𝑈𝑉 → (𝑉𝑠𝑈𝑠))
21adantr 481 . . . . 5 ((𝑈𝑉𝑠𝐶) → (𝑉𝑠𝑈𝑠))
32ss2rabdv 4009 . . . 4 (𝑈𝑉 → {𝑠𝐶𝑉𝑠} ⊆ {𝑠𝐶𝑈𝑠})
4 intss 4900 . . . 4 ({𝑠𝐶𝑉𝑠} ⊆ {𝑠𝐶𝑈𝑠} → {𝑠𝐶𝑈𝑠} ⊆ {𝑠𝐶𝑉𝑠})
53, 4syl 17 . . 3 (𝑈𝑉 {𝑠𝐶𝑈𝑠} ⊆ {𝑠𝐶𝑉𝑠})
653ad2ant2 1133 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → {𝑠𝐶𝑈𝑠} ⊆ {𝑠𝐶𝑉𝑠})
7 simp1 1135 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → 𝐶 ∈ (Moore‘𝑋))
8 sstr 3929 . . . 4 ((𝑈𝑉𝑉𝑋) → 𝑈𝑋)
983adant1 1129 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → 𝑈𝑋)
10 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
1110mrcval 17319 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
127, 9, 11syl2anc 584 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
1310mrcval 17319 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉𝑋) → (𝐹𝑉) = {𝑠𝐶𝑉𝑠})
14133adant2 1130 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝐹𝑉) = {𝑠𝐶𝑉𝑠})
156, 12, 143sstr4d 3968 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝐹𝑈) ⊆ (𝐹𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  wss 3887   cint 4879  cfv 6433  Moorecmre 17291  mrClscmrc 17292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mre 17295  df-mrc 17296
This theorem is referenced by:  mrcsscl  17329  mrcuni  17330  mrcssd  17333  ismrc  40523  isnacs3  40532
  Copyright terms: Public domain W3C validator