![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcss | Structured version Visualization version GIF version |
Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcss | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3989 | . . . . . 6 ⊢ (𝑈 ⊆ 𝑉 → (𝑉 ⊆ 𝑠 → 𝑈 ⊆ 𝑠)) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑈 ⊆ 𝑉 ∧ 𝑠 ∈ 𝐶) → (𝑉 ⊆ 𝑠 → 𝑈 ⊆ 𝑠)) |
3 | 2 | ss2rabdv 4073 | . . . 4 ⊢ (𝑈 ⊆ 𝑉 → {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠} ⊆ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
4 | intss 4973 | . . . 4 ⊢ ({𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠} ⊆ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑈 ⊆ 𝑉 → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
6 | 5 | 3ad2ant2 1133 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
7 | simp1 1135 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
8 | sstr 3990 | . . . 4 ⊢ ((𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) | |
9 | 8 | 3adant1 1129 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) |
10 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
11 | 10 | mrcval 17561 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
12 | 7, 9, 11 | syl2anc 583 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
13 | 10 | mrcval 17561 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑉) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
14 | 13 | 3adant2 1130 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑉) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
15 | 6, 12, 14 | 3sstr4d 4029 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {crab 3431 ⊆ wss 3948 ∩ cint 4950 ‘cfv 6543 Moorecmre 17533 mrClscmrc 17534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-mre 17537 df-mrc 17538 |
This theorem is referenced by: mrcsscl 17571 mrcuni 17572 mrcssd 17575 ismrc 41905 isnacs3 41914 |
Copyright terms: Public domain | W3C validator |