Step | Hyp | Ref
| Expression |
1 | | sstr2 3988 |
. . . . . 6
β’ (π β π β (π β π β π β π )) |
2 | 1 | adantr 481 |
. . . . 5
β’ ((π β π β§ π β πΆ) β (π β π β π β π )) |
3 | 2 | ss2rabdv 4072 |
. . . 4
β’ (π β π β {π β πΆ β£ π β π } β {π β πΆ β£ π β π }) |
4 | | intss 4972 |
. . . 4
β’ ({π β πΆ β£ π β π } β {π β πΆ β£ π β π } β β© {π β πΆ β£ π β π } β β© {π β πΆ β£ π β π }) |
5 | 3, 4 | syl 17 |
. . 3
β’ (π β π β β© {π β πΆ β£ π β π } β β© {π β πΆ β£ π β π }) |
6 | 5 | 3ad2ant2 1134 |
. 2
β’ ((πΆ β (Mooreβπ) β§ π β π β§ π β π) β β© {π β πΆ β£ π β π } β β© {π β πΆ β£ π β π }) |
7 | | simp1 1136 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π β π β§ π β π) β πΆ β (Mooreβπ)) |
8 | | sstr 3989 |
. . . 4
β’ ((π β π β§ π β π) β π β π) |
9 | 8 | 3adant1 1130 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π β π β§ π β π) β π β π) |
10 | | mrcfval.f |
. . . 4
β’ πΉ = (mrClsβπΆ) |
11 | 10 | mrcval 17550 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π β π) β (πΉβπ) = β© {π β πΆ β£ π β π }) |
12 | 7, 9, 11 | syl2anc 584 |
. 2
β’ ((πΆ β (Mooreβπ) β§ π β π β§ π β π) β (πΉβπ) = β© {π β πΆ β£ π β π }) |
13 | 10 | mrcval 17550 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π β π) β (πΉβπ) = β© {π β πΆ β£ π β π }) |
14 | 13 | 3adant2 1131 |
. 2
β’ ((πΆ β (Mooreβπ) β§ π β π β§ π β π) β (πΉβπ) = β© {π β πΆ β£ π β π }) |
15 | 6, 12, 14 | 3sstr4d 4028 |
1
β’ ((πΆ β (Mooreβπ) β§ π β π β§ π β π) β (πΉβπ) β (πΉβπ)) |