![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcss | Structured version Visualization version GIF version |
Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcss | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 4015 | . . . . . 6 ⊢ (𝑈 ⊆ 𝑉 → (𝑉 ⊆ 𝑠 → 𝑈 ⊆ 𝑠)) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑈 ⊆ 𝑉 ∧ 𝑠 ∈ 𝐶) → (𝑉 ⊆ 𝑠 → 𝑈 ⊆ 𝑠)) |
3 | 2 | ss2rabdv 4099 | . . . 4 ⊢ (𝑈 ⊆ 𝑉 → {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠} ⊆ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
4 | intss 4993 | . . . 4 ⊢ ({𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠} ⊆ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑈 ⊆ 𝑉 → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
7 | simp1 1136 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
8 | sstr 4017 | . . . 4 ⊢ ((𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) | |
9 | 8 | 3adant1 1130 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) |
10 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
11 | 10 | mrcval 17668 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
12 | 7, 9, 11 | syl2anc 583 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
13 | 10 | mrcval 17668 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑉) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
14 | 13 | 3adant2 1131 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑉) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
15 | 6, 12, 14 | 3sstr4d 4056 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 ∩ cint 4970 ‘cfv 6573 Moorecmre 17640 mrClscmrc 17641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-mre 17644 df-mrc 17645 |
This theorem is referenced by: mrcsscl 17678 mrcuni 17679 mrcssd 17682 ismrc 42657 isnacs3 42666 |
Copyright terms: Public domain | W3C validator |