| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcss | Structured version Visualization version GIF version | ||
| Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrcss | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3965 | . . . . . 6 ⊢ (𝑈 ⊆ 𝑉 → (𝑉 ⊆ 𝑠 → 𝑈 ⊆ 𝑠)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑈 ⊆ 𝑉 ∧ 𝑠 ∈ 𝐶) → (𝑉 ⊆ 𝑠 → 𝑈 ⊆ 𝑠)) |
| 3 | 2 | ss2rabdv 4051 | . . . 4 ⊢ (𝑈 ⊆ 𝑉 → {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠} ⊆ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
| 4 | intss 4945 | . . . 4 ⊢ ({𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠} ⊆ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑈 ⊆ 𝑉 → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
| 7 | simp1 1136 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
| 8 | sstr 3967 | . . . 4 ⊢ ((𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) | |
| 9 | 8 | 3adant1 1130 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) |
| 10 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 11 | 10 | mrcval 17622 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
| 12 | 7, 9, 11 | syl2anc 584 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
| 13 | 10 | mrcval 17622 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑉) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
| 14 | 13 | 3adant2 1131 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑉) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
| 15 | 6, 12, 14 | 3sstr4d 4014 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 ∩ cint 4922 ‘cfv 6531 Moorecmre 17594 mrClscmrc 17595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-mre 17598 df-mrc 17599 |
| This theorem is referenced by: mrcsscl 17632 mrcuni 17633 mrcssd 17636 ismrc 42724 isnacs3 42733 |
| Copyright terms: Public domain | W3C validator |