Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrcss | Structured version Visualization version GIF version |
Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcss | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3924 | . . . . . 6 ⊢ (𝑈 ⊆ 𝑉 → (𝑉 ⊆ 𝑠 → 𝑈 ⊆ 𝑠)) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑈 ⊆ 𝑉 ∧ 𝑠 ∈ 𝐶) → (𝑉 ⊆ 𝑠 → 𝑈 ⊆ 𝑠)) |
3 | 2 | ss2rabdv 4005 | . . . 4 ⊢ (𝑈 ⊆ 𝑉 → {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠} ⊆ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
4 | intss 4897 | . . . 4 ⊢ ({𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠} ⊆ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑈 ⊆ 𝑉 → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
6 | 5 | 3ad2ant2 1132 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ⊆ ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
7 | simp1 1134 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
8 | sstr 3925 | . . . 4 ⊢ ((𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) | |
9 | 8 | 3adant1 1128 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) |
10 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
11 | 10 | mrcval 17236 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
12 | 7, 9, 11 | syl2anc 583 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
13 | 10 | mrcval 17236 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑉) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
14 | 13 | 3adant2 1129 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑉) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠}) |
15 | 6, 12, 14 | 3sstr4d 3964 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ∩ cint 4876 ‘cfv 6418 Moorecmre 17208 mrClscmrc 17209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-mre 17212 df-mrc 17213 |
This theorem is referenced by: mrcsscl 17246 mrcuni 17247 mrcssd 17250 ismrc 40439 isnacs3 40448 |
Copyright terms: Public domain | W3C validator |