MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspss Structured version   Visualization version   GIF version

Theorem aspss 21802
Description: Span preserves subset ordering. (spanss 31310 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpan‘𝑊)
aspval.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
aspss ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑇) ⊆ (𝐴𝑆))

Proof of Theorem aspss
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1194 . . . . 5 (((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) ∧ 𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊))) → 𝑇𝑆)
2 sstr2 3944 . . . . 5 (𝑇𝑆 → (𝑆𝑡𝑇𝑡))
31, 2syl 17 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) ∧ 𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊))) → (𝑆𝑡𝑇𝑡))
43ss2rabdv 4029 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡})
5 intss 4922 . . 3 ({𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡} → {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
64, 5syl 17 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
7 simp1 1136 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑊 ∈ AssAlg)
8 simp3 1138 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑇𝑆)
9 simp2 1137 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑆𝑉)
108, 9sstrd 3948 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑇𝑉)
11 aspval.a . . . 4 𝐴 = (AlgSpan‘𝑊)
12 aspval.v . . . 4 𝑉 = (Base‘𝑊)
13 eqid 2729 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1411, 12, 13aspval 21798 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑇𝑉) → (𝐴𝑇) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡})
157, 10, 14syl2anc 584 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑇) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡})
1611, 12, 13aspval 21798 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
17163adant3 1132 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
186, 15, 173sstr4d 3993 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑇) ⊆ (𝐴𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3396  cin 3904  wss 3905   cint 4899  cfv 6486  Basecbs 17138  SubRingcsubrg 20472  LSubSpclss 20852  AssAlgcasa 21775  AlgSpancasp 21776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-mgp 20044  df-ur 20085  df-ring 20138  df-subrg 20473  df-lmod 20783  df-lss 20853  df-assa 21778  df-asp 21779
This theorem is referenced by:  mplbas2  21965  mplind  21993
  Copyright terms: Public domain W3C validator