![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aspss | Structured version Visualization version GIF version |
Description: Span preserves subset ordering. (spanss 30866 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
aspval.a | β’ π΄ = (AlgSpanβπ) |
aspval.v | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
aspss | β’ ((π β AssAlg β§ π β π β§ π β π) β (π΄βπ) β (π΄βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1191 | . . . . 5 β’ (((π β AssAlg β§ π β π β§ π β π) β§ π‘ β ((SubRingβπ) β© (LSubSpβπ))) β π β π) | |
2 | sstr2 3990 | . . . . 5 β’ (π β π β (π β π‘ β π β π‘)) | |
3 | 1, 2 | syl 17 | . . . 4 β’ (((π β AssAlg β§ π β π β§ π β π) β§ π‘ β ((SubRingβπ) β© (LSubSpβπ))) β (π β π‘ β π β π‘)) |
4 | 3 | ss2rabdv 4074 | . . 3 β’ ((π β AssAlg β§ π β π β§ π β π) β {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘} β {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘}) |
5 | intss 4974 | . . 3 β’ ({π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘} β {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘} β β© {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘} β β© {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘}) | |
6 | 4, 5 | syl 17 | . 2 β’ ((π β AssAlg β§ π β π β§ π β π) β β© {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘} β β© {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘}) |
7 | simp1 1134 | . . 3 β’ ((π β AssAlg β§ π β π β§ π β π) β π β AssAlg) | |
8 | simp3 1136 | . . . 4 β’ ((π β AssAlg β§ π β π β§ π β π) β π β π) | |
9 | simp2 1135 | . . . 4 β’ ((π β AssAlg β§ π β π β§ π β π) β π β π) | |
10 | 8, 9 | sstrd 3993 | . . 3 β’ ((π β AssAlg β§ π β π β§ π β π) β π β π) |
11 | aspval.a | . . . 4 β’ π΄ = (AlgSpanβπ) | |
12 | aspval.v | . . . 4 β’ π = (Baseβπ) | |
13 | eqid 2730 | . . . 4 β’ (LSubSpβπ) = (LSubSpβπ) | |
14 | 11, 12, 13 | aspval 21648 | . . 3 β’ ((π β AssAlg β§ π β π) β (π΄βπ) = β© {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘}) |
15 | 7, 10, 14 | syl2anc 582 | . 2 β’ ((π β AssAlg β§ π β π β§ π β π) β (π΄βπ) = β© {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘}) |
16 | 11, 12, 13 | aspval 21648 | . . 3 β’ ((π β AssAlg β§ π β π) β (π΄βπ) = β© {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘}) |
17 | 16 | 3adant3 1130 | . 2 β’ ((π β AssAlg β§ π β π β§ π β π) β (π΄βπ) = β© {π‘ β ((SubRingβπ) β© (LSubSpβπ)) β£ π β π‘}) |
18 | 6, 15, 17 | 3sstr4d 4030 | 1 β’ ((π β AssAlg β§ π β π β§ π β π) β (π΄βπ) β (π΄βπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 {crab 3430 β© cin 3948 β wss 3949 β© cint 4951 βcfv 6544 Basecbs 17150 SubRingcsubrg 20459 LSubSpclss 20688 AssAlgcasa 21626 AlgSpancasp 21627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-0g 17393 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18860 df-mgp 20031 df-ur 20078 df-ring 20131 df-subrg 20461 df-lmod 20618 df-lss 20689 df-assa 21629 df-asp 21630 |
This theorem is referenced by: mplbas2 21818 mplind 21852 |
Copyright terms: Public domain | W3C validator |