MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspss Structured version   Visualization version   GIF version

Theorem aspss 20082
Description: Span preserves subset ordering. (spanss 29110 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpan‘𝑊)
aspval.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
aspss ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑇) ⊆ (𝐴𝑆))

Proof of Theorem aspss
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1189 . . . . 5 (((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) ∧ 𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊))) → 𝑇𝑆)
2 sstr2 3953 . . . . 5 (𝑇𝑆 → (𝑆𝑡𝑇𝑡))
31, 2syl 17 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) ∧ 𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊))) → (𝑆𝑡𝑇𝑡))
43ss2rabdv 4031 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡})
5 intss 4873 . . 3 ({𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡} → {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
64, 5syl 17 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
7 simp1 1132 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑊 ∈ AssAlg)
8 simp3 1134 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑇𝑆)
9 simp2 1133 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑆𝑉)
108, 9sstrd 3956 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑇𝑉)
11 aspval.a . . . 4 𝐴 = (AlgSpan‘𝑊)
12 aspval.v . . . 4 𝑉 = (Base‘𝑊)
13 eqid 2820 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1411, 12, 13aspval 20078 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑇𝑉) → (𝐴𝑇) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡})
157, 10, 14syl2anc 586 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑇) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡})
1611, 12, 13aspval 20078 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
17163adant3 1128 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
186, 15, 173sstr4d 3993 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑇) ⊆ (𝐴𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  {crab 3129  cin 3912  wss 3913   cint 4852  cfv 6331  Basecbs 16462  SubRingcsubrg 19507  LSubSpclss 19679  AssAlgcasa 20058  AlgSpancasp 20059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-mgp 19219  df-ur 19231  df-ring 19278  df-subrg 19509  df-lmod 19612  df-lss 19680  df-assa 20061  df-asp 20062
This theorem is referenced by:  mplbas2  20227  mplind  20258
  Copyright terms: Public domain W3C validator