![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fiss | Structured version Visualization version GIF version |
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fiss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3898 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦)) | |
2 | 1 | adantl 482 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦)) |
3 | 2 | anim1d 610 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ((𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦) → (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦))) |
4 | 3 | ss2abdv 3967 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
5 | intss 4805 | . . 3 ⊢ ({𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} → ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
7 | ssexg 5121 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
8 | 7 | ancoms 459 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
9 | dffi2 8736 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝐴) = ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) = ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
11 | dffi2 8736 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (fi‘𝐵) = ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
12 | 11 | adantr 481 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐵) = ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
13 | 6, 10, 12 | 3sstr4d 3937 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2080 {cab 2774 ∀wral 3104 Vcvv 3436 ∩ cin 3860 ⊆ wss 3861 ∩ cint 4784 ‘cfv 6228 ficfi 8723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-oadd 7960 df-er 8142 df-en 8361 df-fin 8364 df-fi 8724 |
This theorem is referenced by: fipwuni 8739 elfiun 8743 tgfiss 21283 ordtbas 21484 leordtval2 21504 lecldbas 21511 2ndcsb 21741 ptbasfi 21873 fclscmpi 22321 prdsxmslem2 22822 |
Copyright terms: Public domain | W3C validator |