| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fiss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| fiss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3965 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦)) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦)) |
| 3 | 2 | anim1d 611 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ((𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦) → (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦))) |
| 4 | 3 | ss2abdv 4041 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 5 | intss 4945 | . . 3 ⊢ ({𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} → ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 7 | ssexg 5293 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 8 | 7 | ancoms 458 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
| 9 | dffi2 9435 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝐴) = ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) = ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 11 | dffi2 9435 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (fi‘𝐵) = ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐵) = ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 13 | 6, 10, 12 | 3sstr4d 4014 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∩ cint 4922 ‘cfv 6531 ficfi 9422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-2o 8481 df-en 8960 df-fin 8963 df-fi 9423 |
| This theorem is referenced by: fipwuni 9438 elfiun 9442 tgfiss 22929 ordtbas 23130 leordtval2 23150 lecldbas 23157 2ndcsb 23387 ptbasfi 23519 fclscmpi 23967 prdsxmslem2 24468 |
| Copyright terms: Public domain | W3C validator |