MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiss Structured version   Visualization version   GIF version

Theorem fiss 9415
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))

Proof of Theorem fiss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr2 3981 . . . . . 6 (𝐴𝐵 → (𝐵𝑦𝐴𝑦))
21adantl 481 . . . . 5 ((𝐵𝑉𝐴𝐵) → (𝐵𝑦𝐴𝑦))
32anim1d 610 . . . 4 ((𝐵𝑉𝐴𝐵) → ((𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦) → (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)))
43ss2abdv 4052 . . 3 ((𝐵𝑉𝐴𝐵) → {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
5 intss 4963 . . 3 ({𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} → {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
64, 5syl 17 . 2 ((𝐵𝑉𝐴𝐵) → {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
7 ssexg 5313 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
87ancoms 458 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
9 dffi2 9414 . . 3 (𝐴 ∈ V → (fi‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
108, 9syl 17 . 2 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
11 dffi2 9414 . . 3 (𝐵𝑉 → (fi‘𝐵) = {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
1211adantr 480 . 2 ((𝐵𝑉𝐴𝐵) → (fi‘𝐵) = {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
136, 10, 123sstr4d 4021 1 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2701  wral 3053  Vcvv 3466  cin 3939  wss 3940   cint 4940  cfv 6533  ficfi 9401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-om 7849  df-1o 8461  df-er 8699  df-en 8936  df-fin 8939  df-fi 9402
This theorem is referenced by:  fipwuni  9417  elfiun  9421  tgfiss  22816  ordtbas  23018  leordtval2  23038  lecldbas  23045  2ndcsb  23275  ptbasfi  23407  fclscmpi  23855  prdsxmslem2  24360
  Copyright terms: Public domain W3C validator