MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiss Structured version   Visualization version   GIF version

Theorem fiss 9040
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))

Proof of Theorem fiss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr2 3908 . . . . . 6 (𝐴𝐵 → (𝐵𝑦𝐴𝑦))
21adantl 485 . . . . 5 ((𝐵𝑉𝐴𝐵) → (𝐵𝑦𝐴𝑦))
32anim1d 614 . . . 4 ((𝐵𝑉𝐴𝐵) → ((𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦) → (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)))
43ss2abdv 3977 . . 3 ((𝐵𝑉𝐴𝐵) → {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
5 intss 4880 . . 3 ({𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} → {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
64, 5syl 17 . 2 ((𝐵𝑉𝐴𝐵) → {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
7 ssexg 5216 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
87ancoms 462 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
9 dffi2 9039 . . 3 (𝐴 ∈ V → (fi‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
108, 9syl 17 . 2 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
11 dffi2 9039 . . 3 (𝐵𝑉 → (fi‘𝐵) = {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
1211adantr 484 . 2 ((𝐵𝑉𝐴𝐵) → (fi‘𝐵) = {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
136, 10, 123sstr4d 3948 1 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {cab 2714  wral 3061  Vcvv 3408  cin 3865  wss 3866   cint 4859  cfv 6380  ficfi 9026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-1o 8202  df-er 8391  df-en 8627  df-fin 8630  df-fi 9027
This theorem is referenced by:  fipwuni  9042  elfiun  9046  tgfiss  21888  ordtbas  22089  leordtval2  22109  lecldbas  22116  2ndcsb  22346  ptbasfi  22478  fclscmpi  22926  prdsxmslem2  23427
  Copyright terms: Public domain W3C validator