| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fiss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| fiss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3937 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦)) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦)) |
| 3 | 2 | anim1d 611 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ((𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦) → (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦))) |
| 4 | 3 | ss2abdv 4014 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 5 | intss 4921 | . . 3 ⊢ ({𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} → ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 7 | ssexg 5265 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 8 | 7 | ancoms 458 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
| 9 | dffi2 9318 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝐴) = ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) = ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 11 | dffi2 9318 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (fi‘𝐵) = ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐵) = ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 13 | 6, 10, 12 | 3sstr4d 3986 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3048 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ∩ cint 4899 ‘cfv 6489 ficfi 9305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-om 7806 df-1o 8394 df-2o 8395 df-en 8880 df-fin 8883 df-fi 9306 |
| This theorem is referenced by: fipwuni 9321 elfiun 9325 tgfiss 22926 ordtbas 23127 leordtval2 23147 lecldbas 23154 2ndcsb 23384 ptbasfi 23516 fclscmpi 23964 prdsxmslem2 24464 |
| Copyright terms: Public domain | W3C validator |