| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fiss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| fiss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3944 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦)) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦)) |
| 3 | 2 | anim1d 611 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ((𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦) → (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦))) |
| 4 | 3 | ss2abdv 4020 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 5 | intss 4922 | . . 3 ⊢ ({𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} → ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)} ⊆ ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 7 | ssexg 5265 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 8 | 7 | ancoms 458 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
| 9 | dffi2 9332 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝐴) = ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) = ∩ {𝑦 ∣ (𝐴 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 11 | dffi2 9332 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (fi‘𝐵) = ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) | |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐵) = ∩ {𝑦 ∣ (𝐵 ⊆ 𝑦 ∧ ∀𝑥 ∈ 𝑦 ∀𝑧 ∈ 𝑦 (𝑥 ∩ 𝑧) ∈ 𝑦)}) |
| 13 | 6, 10, 12 | 3sstr4d 3993 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∩ cint 4899 ‘cfv 6486 ficfi 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-2o 8396 df-en 8880 df-fin 8883 df-fi 9320 |
| This theorem is referenced by: fipwuni 9335 elfiun 9339 tgfiss 22894 ordtbas 23095 leordtval2 23115 lecldbas 23122 2ndcsb 23352 ptbasfi 23484 fclscmpi 23932 prdsxmslem2 24433 |
| Copyright terms: Public domain | W3C validator |