MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiss Structured version   Visualization version   GIF version

Theorem fiss 9431
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))

Proof of Theorem fiss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr2 3963 . . . . . 6 (𝐴𝐵 → (𝐵𝑦𝐴𝑦))
21adantl 481 . . . . 5 ((𝐵𝑉𝐴𝐵) → (𝐵𝑦𝐴𝑦))
32anim1d 611 . . . 4 ((𝐵𝑉𝐴𝐵) → ((𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦) → (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)))
43ss2abdv 4039 . . 3 ((𝐵𝑉𝐴𝐵) → {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
5 intss 4943 . . 3 ({𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} → {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
64, 5syl 17 . 2 ((𝐵𝑉𝐴𝐵) → {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
7 ssexg 5291 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
87ancoms 458 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
9 dffi2 9430 . . 3 (𝐴 ∈ V → (fi‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
108, 9syl 17 . 2 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
11 dffi2 9430 . . 3 (𝐵𝑉 → (fi‘𝐵) = {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
1211adantr 480 . 2 ((𝐵𝑉𝐴𝐵) → (fi‘𝐵) = {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
136, 10, 123sstr4d 4012 1 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  wral 3050  Vcvv 3457  cin 3923  wss 3924   cint 4920  cfv 6528  ficfi 9417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-om 7857  df-1o 8475  df-2o 8476  df-en 8955  df-fin 8958  df-fi 9418
This theorem is referenced by:  fipwuni  9433  elfiun  9437  tgfiss  22916  ordtbas  23117  leordtval2  23137  lecldbas  23144  2ndcsb  23374  ptbasfi  23506  fclscmpi  23954  prdsxmslem2  24455
  Copyright terms: Public domain W3C validator