Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddssim Structured version   Visualization version   GIF version

Theorem naddssim 33435
Description: Ordinal less-than-or-equal is preserved by natural addition. (Contributed by Scott Fenton, 7-Sep-2024.)
Assertion
Ref Expression
naddssim ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))

Proof of Theorem naddssim
Dummy variables 𝑐 𝑑 𝑤 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7164 . . . . . . 7 (𝑐 = 𝑑 → (𝐴 +no 𝑐) = (𝐴 +no 𝑑))
2 oveq2 7164 . . . . . . 7 (𝑐 = 𝑑 → (𝐵 +no 𝑐) = (𝐵 +no 𝑑))
31, 2sseq12d 3927 . . . . . 6 (𝑐 = 𝑑 → ((𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐) ↔ (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)))
43imbi2d 344 . . . . 5 (𝑐 = 𝑑 → ((𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)) ↔ (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))))
54imbi2d 344 . . . 4 (𝑐 = 𝑑 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)))))
6 oveq2 7164 . . . . . . 7 (𝑐 = 𝐶 → (𝐴 +no 𝑐) = (𝐴 +no 𝐶))
7 oveq2 7164 . . . . . . 7 (𝑐 = 𝐶 → (𝐵 +no 𝑐) = (𝐵 +no 𝐶))
86, 7sseq12d 3927 . . . . . 6 (𝑐 = 𝐶 → ((𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐) ↔ (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))
98imbi2d 344 . . . . 5 (𝑐 = 𝐶 → ((𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)) ↔ (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))))
109imbi2d 344 . . . 4 (𝑐 = 𝐶 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))))
11 r19.21v 3106 . . . . . 6 (∀𝑑𝑐 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑑𝑐 (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))))
12 r19.21v 3106 . . . . . . 7 (∀𝑑𝑐 (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ↔ (𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)))
1312imbi2i 339 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑑𝑐 (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))))
1411, 13bitri 278 . . . . 5 (∀𝑑𝑐 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))))
15 oveq2 7164 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑤 → (𝐴 +no 𝑑) = (𝐴 +no 𝑤))
16 oveq2 7164 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑤 → (𝐵 +no 𝑑) = (𝐵 +no 𝑤))
1715, 16sseq12d 3927 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑤 → ((𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑) ↔ (𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤)))
1817rspccva 3542 . . . . . . . . . . . . . . . . 17 ((∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑) ∧ 𝑤𝑐) → (𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤))
1918ad4ant24 753 . . . . . . . . . . . . . . . 16 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → (𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤))
20 simprrl 780 . . . . . . . . . . . . . . . . 17 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥)
21 oveq2 7164 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (𝐵 +no 𝑦) = (𝐵 +no 𝑤))
2221eleq1d 2836 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → ((𝐵 +no 𝑦) ∈ 𝑥 ↔ (𝐵 +no 𝑤) ∈ 𝑥))
2322rspccva 3542 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥𝑤𝑐) → (𝐵 +no 𝑤) ∈ 𝑥)
2420, 23sylan 583 . . . . . . . . . . . . . . . 16 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → (𝐵 +no 𝑤) ∈ 𝑥)
25 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) → 𝐴 ∈ On)
2625adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → 𝐴 ∈ On)
2726adantr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → 𝐴 ∈ On)
2827adantr 484 . . . . . . . . . . . . . . . . . 18 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → 𝐴 ∈ On)
29 simp-4l 782 . . . . . . . . . . . . . . . . . . 19 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → 𝑐 ∈ On)
30 onelon 6199 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ On ∧ 𝑤𝑐) → 𝑤 ∈ On)
3129, 30sylan 583 . . . . . . . . . . . . . . . . . 18 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → 𝑤 ∈ On)
32 naddcl 33430 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝑤 ∈ On) → (𝐴 +no 𝑤) ∈ On)
3328, 31, 32syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → (𝐴 +no 𝑤) ∈ On)
34 simplrl 776 . . . . . . . . . . . . . . . . 17 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → 𝑥 ∈ On)
35 ontr2 6221 . . . . . . . . . . . . . . . . 17 (((𝐴 +no 𝑤) ∈ On ∧ 𝑥 ∈ On) → (((𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤) ∧ (𝐵 +no 𝑤) ∈ 𝑥) → (𝐴 +no 𝑤) ∈ 𝑥))
3633, 34, 35syl2anc 587 . . . . . . . . . . . . . . . 16 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → (((𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤) ∧ (𝐵 +no 𝑤) ∈ 𝑥) → (𝐴 +no 𝑤) ∈ 𝑥))
3719, 24, 36mp2and 698 . . . . . . . . . . . . . . 15 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → (𝐴 +no 𝑤) ∈ 𝑥)
3837ralrimiva 3113 . . . . . . . . . . . . . 14 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥)
39 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → 𝐴𝐵)
40 simprrr 781 . . . . . . . . . . . . . . 15 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)
41 ssralv 3960 . . . . . . . . . . . . . . 15 (𝐴𝐵 → (∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥 → ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥))
4239, 40, 41sylc 65 . . . . . . . . . . . . . 14 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)
4338, 42jca 515 . . . . . . . . . . . . 13 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥))
4443expr 460 . . . . . . . . . . . 12 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ 𝑥 ∈ On) → ((∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥) → (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)))
4544ss2rabdv 3982 . . . . . . . . . . 11 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → {𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)})
46 intss 4862 . . . . . . . . . . 11 ({𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)} → {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ {𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)})
4745, 46syl 17 . . . . . . . . . 10 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ {𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)})
48 simplll 774 . . . . . . . . . . 11 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → 𝑐 ∈ On)
49 naddov2 33432 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑐 ∈ On) → (𝐴 +no 𝑐) = {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)})
5026, 48, 49syl2anc 587 . . . . . . . . . 10 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴 +no 𝑐) = {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)})
51 simplrr 777 . . . . . . . . . . . 12 (((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) → 𝐵 ∈ On)
5251adantr 484 . . . . . . . . . . 11 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → 𝐵 ∈ On)
53 naddov2 33432 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑐 ∈ On) → (𝐵 +no 𝑐) = {𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)})
5452, 48, 53syl2anc 587 . . . . . . . . . 10 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐵 +no 𝑐) = {𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)})
5547, 50, 543sstr4d 3941 . . . . . . . . 9 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))
5655exp31 423 . . . . . . . 8 ((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴𝐵 → (∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑) → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))))
5756a2d 29 . . . . . . 7 ((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))))
5857ex 416 . . . . . 6 (𝑐 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)))))
5958a2d 29 . . . . 5 (𝑐 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)))))
6014, 59syl5bi 245 . . . 4 (𝑐 ∈ On → (∀𝑑𝑐 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)))))
615, 10, 60tfis3 7577 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))))
6261com12 32 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))))
63623impia 1114 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  {crab 3074  wss 3860   cint 4841  Oncon0 6174  (class class class)co 7156   +no cnadd 33422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-frecs 33393  df-nadd 33423
This theorem is referenced by:  naddel1  33437
  Copyright terms: Public domain W3C validator