| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑐 = 𝑑 → (𝐴 +no 𝑐) = (𝐴 +no 𝑑)) |
| 2 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑐 = 𝑑 → (𝐵 +no 𝑐) = (𝐵 +no 𝑑)) |
| 3 | 1, 2 | sseq12d 3997 |
. . . . . 6
⊢ (𝑐 = 𝑑 → ((𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐) ↔ (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) |
| 4 | 3 | imbi2d 340 |
. . . . 5
⊢ (𝑐 = 𝑑 → ((𝐴 ⊆ 𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)) ↔ (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)))) |
| 5 | 4 | imbi2d 340 |
. . . 4
⊢ (𝑐 = 𝑑 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))))) |
| 6 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝐴 +no 𝑐) = (𝐴 +no 𝐶)) |
| 7 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝐵 +no 𝑐) = (𝐵 +no 𝐶)) |
| 8 | 6, 7 | sseq12d 3997 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐) ↔ (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))) |
| 9 | 8 | imbi2d 340 |
. . . . 5
⊢ (𝑐 = 𝐶 → ((𝐴 ⊆ 𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)) ↔ (𝐴 ⊆ 𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))) |
| 10 | 9 | imbi2d 340 |
. . . 4
⊢ (𝑐 = 𝐶 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))))) |
| 11 | | r19.21v 3166 |
. . . . . 6
⊢
(∀𝑑 ∈
𝑐 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑑 ∈ 𝑐 (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)))) |
| 12 | | r19.21v 3166 |
. . . . . . 7
⊢
(∀𝑑 ∈
𝑐 (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ↔ (𝐴 ⊆ 𝐵 → ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) |
| 13 | 12 | imbi2i 336 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑑 ∈ 𝑐 (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)))) |
| 14 | 11, 13 | bitri 275 |
. . . . 5
⊢
(∀𝑑 ∈
𝑐 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)))) |
| 15 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = 𝑤 → (𝐴 +no 𝑑) = (𝐴 +no 𝑤)) |
| 16 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = 𝑤 → (𝐵 +no 𝑑) = (𝐵 +no 𝑤)) |
| 17 | 15, 16 | sseq12d 3997 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑤 → ((𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑) ↔ (𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤))) |
| 18 | 17 | rspccva 3605 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑑 ∈
𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑) ∧ 𝑤 ∈ 𝑐) → (𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤)) |
| 19 | 18 | ad4ant24 754 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤 ∈ 𝑐) → (𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤)) |
| 20 | | simprrl 780 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥) |
| 21 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑤 → (𝐵 +no 𝑦) = (𝐵 +no 𝑤)) |
| 22 | 21 | eleq1d 2820 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑤 → ((𝐵 +no 𝑦) ∈ 𝑥 ↔ (𝐵 +no 𝑤) ∈ 𝑥)) |
| 23 | 22 | rspccva 3605 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑦 ∈
𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ 𝑤 ∈ 𝑐) → (𝐵 +no 𝑤) ∈ 𝑥) |
| 24 | 20, 23 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤 ∈ 𝑐) → (𝐵 +no 𝑤) ∈ 𝑥) |
| 25 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ On) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → 𝐴 ∈ On) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → 𝐴 ∈ On) |
| 28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤 ∈ 𝑐) → 𝐴 ∈ On) |
| 29 | | simp-4l 782 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → 𝑐 ∈ On) |
| 30 | | onelon 6382 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑐 ∈ On ∧ 𝑤 ∈ 𝑐) → 𝑤 ∈ On) |
| 31 | 29, 30 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤 ∈ 𝑐) → 𝑤 ∈ On) |
| 32 | | naddcl 8694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ On ∧ 𝑤 ∈ On) → (𝐴 +no 𝑤) ∈ On) |
| 33 | 28, 31, 32 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤 ∈ 𝑐) → (𝐴 +no 𝑤) ∈ On) |
| 34 | | simplrl 776 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤 ∈ 𝑐) → 𝑥 ∈ On) |
| 35 | | ontr2 6405 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 +no 𝑤) ∈ On ∧ 𝑥 ∈ On) → (((𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤) ∧ (𝐵 +no 𝑤) ∈ 𝑥) → (𝐴 +no 𝑤) ∈ 𝑥)) |
| 36 | 33, 34, 35 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤 ∈ 𝑐) → (((𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤) ∧ (𝐵 +no 𝑤) ∈ 𝑥) → (𝐴 +no 𝑤) ∈ 𝑥)) |
| 37 | 19, 24, 36 | mp2and 699 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤 ∈ 𝑐) → (𝐴 +no 𝑤) ∈ 𝑥) |
| 38 | 37 | ralrimiva 3133 |
. . . . . . . . . . . . . 14
⊢
(((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑤 ∈ 𝑐 (𝐴 +no 𝑤) ∈ 𝑥) |
| 39 | | simpllr 775 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → 𝐴 ⊆ 𝐵) |
| 40 | | simprrr 781 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥) |
| 41 | | ssralv 4032 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ 𝐵 → (∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥 → ∀𝑧 ∈ 𝐴 (𝑧 +no 𝑐) ∈ 𝑥)) |
| 42 | 39, 40, 41 | sylc 65 |
. . . . . . . . . . . . . 14
⊢
(((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑧 ∈ 𝐴 (𝑧 +no 𝑐) ∈ 𝑥) |
| 43 | 38, 42 | jca 511 |
. . . . . . . . . . . . 13
⊢
(((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → (∀𝑤 ∈ 𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝑐) ∈ 𝑥)) |
| 44 | 43 | expr 456 |
. . . . . . . . . . . 12
⊢
(((((𝑐 ∈ On
∧ (𝐴 ∈ On ∧
𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ 𝑥 ∈ On) → ((∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥) → (∀𝑤 ∈ 𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝑐) ∈ 𝑥))) |
| 45 | 44 | ss2rabdv 4056 |
. . . . . . . . . . 11
⊢ ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → {𝑥 ∈ On ∣ (∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ {𝑥 ∈ On ∣ (∀𝑤 ∈ 𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝑐) ∈ 𝑥)}) |
| 46 | | intss 4950 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ On ∣
(∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ {𝑥 ∈ On ∣ (∀𝑤 ∈ 𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝑐) ∈ 𝑥)} → ∩ {𝑥 ∈ On ∣
(∀𝑤 ∈ 𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ ∩
{𝑥 ∈ On ∣
(∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥)}) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → ∩ {𝑥 ∈ On ∣
(∀𝑤 ∈ 𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ ∩
{𝑥 ∈ On ∣
(∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥)}) |
| 48 | | simplll 774 |
. . . . . . . . . . 11
⊢ ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → 𝑐 ∈ On) |
| 49 | | naddov2 8696 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑐 ∈ On) → (𝐴 +no 𝑐) = ∩ {𝑥 ∈ On ∣
(∀𝑤 ∈ 𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝑐) ∈ 𝑥)}) |
| 50 | 26, 48, 49 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴 +no 𝑐) = ∩ {𝑥 ∈ On ∣
(∀𝑤 ∈ 𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝑐) ∈ 𝑥)}) |
| 51 | | simplrr 777 |
. . . . . . . . . . . 12
⊢ (((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ On) |
| 52 | 51 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → 𝐵 ∈ On) |
| 53 | | naddov2 8696 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝑐 ∈ On) → (𝐵 +no 𝑐) = ∩ {𝑥 ∈ On ∣
(∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥)}) |
| 54 | 52, 48, 53 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐵 +no 𝑐) = ∩ {𝑥 ∈ On ∣
(∀𝑦 ∈ 𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (𝑧 +no 𝑐) ∈ 𝑥)}) |
| 55 | 47, 50, 54 | 3sstr4d 4019 |
. . . . . . . . 9
⊢ ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)) |
| 56 | 55 | exp31 419 |
. . . . . . . 8
⊢ ((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ⊆ 𝐵 → (∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑) → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)))) |
| 57 | 56 | a2d 29 |
. . . . . . 7
⊢ ((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ⊆ 𝐵 → ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)))) |
| 58 | 57 | ex 412 |
. . . . . 6
⊢ (𝑐 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ⊆ 𝐵 → ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))))) |
| 59 | 58 | a2d 29 |
. . . . 5
⊢ (𝑐 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → ∀𝑑 ∈ 𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))))) |
| 60 | 14, 59 | biimtrid 242 |
. . . 4
⊢ (𝑐 ∈ On → (∀𝑑 ∈ 𝑐 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))))) |
| 61 | 5, 10, 60 | tfis3 7858 |
. . 3
⊢ (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))) |
| 62 | 61 | com12 32 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))) |
| 63 | 62 | 3impia 1117 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))) |