MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddssim Structured version   Visualization version   GIF version

Theorem naddssim 8649
Description: Ordinal less-than-or-equal is preserved by natural addition. (Contributed by Scott Fenton, 7-Sep-2024.)
Assertion
Ref Expression
naddssim ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))

Proof of Theorem naddssim
Dummy variables 𝑐 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . . 7 (𝑐 = 𝑑 → (𝐴 +no 𝑐) = (𝐴 +no 𝑑))
2 oveq2 7395 . . . . . . 7 (𝑐 = 𝑑 → (𝐵 +no 𝑐) = (𝐵 +no 𝑑))
31, 2sseq12d 3980 . . . . . 6 (𝑐 = 𝑑 → ((𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐) ↔ (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)))
43imbi2d 340 . . . . 5 (𝑐 = 𝑑 → ((𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)) ↔ (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))))
54imbi2d 340 . . . 4 (𝑐 = 𝑑 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)))))
6 oveq2 7395 . . . . . . 7 (𝑐 = 𝐶 → (𝐴 +no 𝑐) = (𝐴 +no 𝐶))
7 oveq2 7395 . . . . . . 7 (𝑐 = 𝐶 → (𝐵 +no 𝑐) = (𝐵 +no 𝐶))
86, 7sseq12d 3980 . . . . . 6 (𝑐 = 𝐶 → ((𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐) ↔ (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))
98imbi2d 340 . . . . 5 (𝑐 = 𝐶 → ((𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)) ↔ (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))))
109imbi2d 340 . . . 4 (𝑐 = 𝐶 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))))
11 r19.21v 3158 . . . . . 6 (∀𝑑𝑐 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑑𝑐 (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))))
12 r19.21v 3158 . . . . . . 7 (∀𝑑𝑐 (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ↔ (𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)))
1312imbi2i 336 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑑𝑐 (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))))
1411, 13bitri 275 . . . . 5 (∀𝑑𝑐 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))))
15 oveq2 7395 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑤 → (𝐴 +no 𝑑) = (𝐴 +no 𝑤))
16 oveq2 7395 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑤 → (𝐵 +no 𝑑) = (𝐵 +no 𝑤))
1715, 16sseq12d 3980 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑤 → ((𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑) ↔ (𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤)))
1817rspccva 3587 . . . . . . . . . . . . . . . . 17 ((∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑) ∧ 𝑤𝑐) → (𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤))
1918ad4ant24 754 . . . . . . . . . . . . . . . 16 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → (𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤))
20 simprrl 780 . . . . . . . . . . . . . . . . 17 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥)
21 oveq2 7395 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (𝐵 +no 𝑦) = (𝐵 +no 𝑤))
2221eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → ((𝐵 +no 𝑦) ∈ 𝑥 ↔ (𝐵 +no 𝑤) ∈ 𝑥))
2322rspccva 3587 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥𝑤𝑐) → (𝐵 +no 𝑤) ∈ 𝑥)
2420, 23sylan 580 . . . . . . . . . . . . . . . 16 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → (𝐵 +no 𝑤) ∈ 𝑥)
25 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) → 𝐴 ∈ On)
2625adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → 𝐴 ∈ On)
2726adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → 𝐴 ∈ On)
2827adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → 𝐴 ∈ On)
29 simp-4l 782 . . . . . . . . . . . . . . . . . . 19 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → 𝑐 ∈ On)
30 onelon 6357 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ On ∧ 𝑤𝑐) → 𝑤 ∈ On)
3129, 30sylan 580 . . . . . . . . . . . . . . . . . 18 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → 𝑤 ∈ On)
32 naddcl 8641 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝑤 ∈ On) → (𝐴 +no 𝑤) ∈ On)
3328, 31, 32syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → (𝐴 +no 𝑤) ∈ On)
34 simplrl 776 . . . . . . . . . . . . . . . . 17 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → 𝑥 ∈ On)
35 ontr2 6380 . . . . . . . . . . . . . . . . 17 (((𝐴 +no 𝑤) ∈ On ∧ 𝑥 ∈ On) → (((𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤) ∧ (𝐵 +no 𝑤) ∈ 𝑥) → (𝐴 +no 𝑤) ∈ 𝑥))
3633, 34, 35syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → (((𝐴 +no 𝑤) ⊆ (𝐵 +no 𝑤) ∧ (𝐵 +no 𝑤) ∈ 𝑥) → (𝐴 +no 𝑤) ∈ 𝑥))
3719, 24, 36mp2and 699 . . . . . . . . . . . . . . 15 ((((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) ∧ 𝑤𝑐) → (𝐴 +no 𝑤) ∈ 𝑥)
3837ralrimiva 3125 . . . . . . . . . . . . . 14 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥)
39 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → 𝐴𝐵)
40 simprrr 781 . . . . . . . . . . . . . . 15 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)
41 ssralv 4015 . . . . . . . . . . . . . . 15 (𝐴𝐵 → (∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥 → ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥))
4239, 40, 41sylc 65 . . . . . . . . . . . . . 14 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)
4338, 42jca 511 . . . . . . . . . . . . 13 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ (𝑥 ∈ On ∧ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥))) → (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥))
4443expr 456 . . . . . . . . . . . 12 (((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) ∧ 𝑥 ∈ On) → ((∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥) → (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)))
4544ss2rabdv 4039 . . . . . . . . . . 11 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → {𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)})
46 intss 4933 . . . . . . . . . . 11 ({𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)} → {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ {𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)})
4745, 46syl 17 . . . . . . . . . 10 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)} ⊆ {𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)})
48 simplll 774 . . . . . . . . . . 11 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → 𝑐 ∈ On)
49 naddov2 8643 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑐 ∈ On) → (𝐴 +no 𝑐) = {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)})
5026, 48, 49syl2anc 584 . . . . . . . . . 10 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴 +no 𝑐) = {𝑥 ∈ On ∣ (∀𝑤𝑐 (𝐴 +no 𝑤) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝑐) ∈ 𝑥)})
51 simplrr 777 . . . . . . . . . . . 12 (((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) → 𝐵 ∈ On)
5251adantr 480 . . . . . . . . . . 11 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → 𝐵 ∈ On)
53 naddov2 8643 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑐 ∈ On) → (𝐵 +no 𝑐) = {𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)})
5452, 48, 53syl2anc 584 . . . . . . . . . 10 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐵 +no 𝑐) = {𝑥 ∈ On ∣ (∀𝑦𝑐 (𝐵 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐵 (𝑧 +no 𝑐) ∈ 𝑥)})
5547, 50, 543sstr4d 4002 . . . . . . . . 9 ((((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝐴𝐵) ∧ ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))
5655exp31 419 . . . . . . . 8 ((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴𝐵 → (∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑) → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))))
5756a2d 29 . . . . . . 7 ((𝑐 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐))))
5857ex 412 . . . . . 6 (𝑐 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑)) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)))))
5958a2d 29 . . . . 5 (𝑐 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∀𝑑𝑐 (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)))))
6014, 59biimtrid 242 . . . 4 (𝑐 ∈ On → (∀𝑑𝑐 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑑) ⊆ (𝐵 +no 𝑑))) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝑐) ⊆ (𝐵 +no 𝑐)))))
615, 10, 60tfis3 7834 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))))
6261com12 32 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))))
63623impia 1117 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  wss 3914   cint 4910  Oncon0 6332  (class class class)co 7387   +no cnadd 8629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-nadd 8630
This theorem is referenced by:  naddel1  8651  nadd2rabex  43375
  Copyright terms: Public domain W3C validator