![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspss | Structured version Visualization version GIF version |
Description: Span preserves subset ordering. (spanss 30856 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | β’ π = (Baseβπ) |
lspss.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspss | β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β (πβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1193 | . . . . 5 β’ (((π β LMod β§ π β π β§ π β π) β§ π‘ β (LSubSpβπ)) β π β π) | |
2 | sstr2 3989 | . . . . 5 β’ (π β π β (π β π‘ β π β π‘)) | |
3 | 1, 2 | syl 17 | . . . 4 β’ (((π β LMod β§ π β π β§ π β π) β§ π‘ β (LSubSpβπ)) β (π β π‘ β π β π‘)) |
4 | 3 | ss2rabdv 4073 | . . 3 β’ ((π β LMod β§ π β π β§ π β π) β {π‘ β (LSubSpβπ) β£ π β π‘} β {π‘ β (LSubSpβπ) β£ π β π‘}) |
5 | intss 4973 | . . 3 β’ ({π‘ β (LSubSpβπ) β£ π β π‘} β {π‘ β (LSubSpβπ) β£ π β π‘} β β© {π‘ β (LSubSpβπ) β£ π β π‘} β β© {π‘ β (LSubSpβπ) β£ π β π‘}) | |
6 | 4, 5 | syl 17 | . 2 β’ ((π β LMod β§ π β π β§ π β π) β β© {π‘ β (LSubSpβπ) β£ π β π‘} β β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
7 | simp1 1136 | . . 3 β’ ((π β LMod β§ π β π β§ π β π) β π β LMod) | |
8 | simp3 1138 | . . . 4 β’ ((π β LMod β§ π β π β§ π β π) β π β π) | |
9 | simp2 1137 | . . . 4 β’ ((π β LMod β§ π β π β§ π β π) β π β π) | |
10 | 8, 9 | sstrd 3992 | . . 3 β’ ((π β LMod β§ π β π β§ π β π) β π β π) |
11 | lspss.v | . . . 4 β’ π = (Baseβπ) | |
12 | eqid 2732 | . . . 4 β’ (LSubSpβπ) = (LSubSpβπ) | |
13 | lspss.n | . . . 4 β’ π = (LSpanβπ) | |
14 | 11, 12, 13 | lspval 20730 | . . 3 β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
15 | 7, 10, 14 | syl2anc 584 | . 2 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
16 | 11, 12, 13 | lspval 20730 | . . 3 β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
17 | 16 | 3adant3 1132 | . 2 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
18 | 6, 15, 17 | 3sstr4d 4029 | 1 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β (πβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 {crab 3432 β wss 3948 β© cint 4950 βcfv 6543 Basecbs 17148 LModclmod 20614 LSubSpclss 20686 LSpanclspn 20726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-lmod 20616 df-lss 20687 df-lsp 20727 |
This theorem is referenced by: lspun 20742 lspssp 20743 lspprid1 20752 lbspss 20837 lspsolvlem 20900 lspsolv 20901 lsppratlem3 20907 lbsextlem2 20917 lbsextlem3 20918 lbsextlem4 20919 lindfrn 21595 f1lindf 21596 mxidlprm 32848 idlsrgmulrss1 32887 idlsrgmulrss2 32888 lindsunlem 32985 dimkerim 32988 lindsadd 36784 lssats 38185 lpssat 38186 lssatle 38188 lssat 38189 dvhdimlem 40618 dvh3dim3N 40623 mapdindp2 40895 lspindp5 40944 |
Copyright terms: Public domain | W3C validator |