![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspss | Structured version Visualization version GIF version |
Description: Span preserves subset ordering. (spanss 30588 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | β’ π = (Baseβπ) |
lspss.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspss | β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β (πβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1193 | . . . . 5 β’ (((π β LMod β§ π β π β§ π β π) β§ π‘ β (LSubSpβπ)) β π β π) | |
2 | sstr2 3988 | . . . . 5 β’ (π β π β (π β π‘ β π β π‘)) | |
3 | 1, 2 | syl 17 | . . . 4 β’ (((π β LMod β§ π β π β§ π β π) β§ π‘ β (LSubSpβπ)) β (π β π‘ β π β π‘)) |
4 | 3 | ss2rabdv 4072 | . . 3 β’ ((π β LMod β§ π β π β§ π β π) β {π‘ β (LSubSpβπ) β£ π β π‘} β {π‘ β (LSubSpβπ) β£ π β π‘}) |
5 | intss 4972 | . . 3 β’ ({π‘ β (LSubSpβπ) β£ π β π‘} β {π‘ β (LSubSpβπ) β£ π β π‘} β β© {π‘ β (LSubSpβπ) β£ π β π‘} β β© {π‘ β (LSubSpβπ) β£ π β π‘}) | |
6 | 4, 5 | syl 17 | . 2 β’ ((π β LMod β§ π β π β§ π β π) β β© {π‘ β (LSubSpβπ) β£ π β π‘} β β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
7 | simp1 1136 | . . 3 β’ ((π β LMod β§ π β π β§ π β π) β π β LMod) | |
8 | simp3 1138 | . . . 4 β’ ((π β LMod β§ π β π β§ π β π) β π β π) | |
9 | simp2 1137 | . . . 4 β’ ((π β LMod β§ π β π β§ π β π) β π β π) | |
10 | 8, 9 | sstrd 3991 | . . 3 β’ ((π β LMod β§ π β π β§ π β π) β π β π) |
11 | lspss.v | . . . 4 β’ π = (Baseβπ) | |
12 | eqid 2732 | . . . 4 β’ (LSubSpβπ) = (LSubSpβπ) | |
13 | lspss.n | . . . 4 β’ π = (LSpanβπ) | |
14 | 11, 12, 13 | lspval 20578 | . . 3 β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
15 | 7, 10, 14 | syl2anc 584 | . 2 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
16 | 11, 12, 13 | lspval 20578 | . . 3 β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
17 | 16 | 3adant3 1132 | . 2 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
18 | 6, 15, 17 | 3sstr4d 4028 | 1 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β (πβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 {crab 3432 β wss 3947 β© cint 4949 βcfv 6540 Basecbs 17140 LModclmod 20463 LSubSpclss 20534 LSpanclspn 20574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-lmod 20465 df-lss 20535 df-lsp 20575 |
This theorem is referenced by: lspun 20590 lspssp 20591 lspprid1 20600 lbspss 20685 lspsolvlem 20747 lspsolv 20748 lsppratlem3 20754 lbsextlem2 20764 lbsextlem3 20765 lbsextlem4 20766 lindfrn 21367 f1lindf 21368 mxidlprm 32574 idlsrgmulrss1 32613 idlsrgmulrss2 32614 lindsunlem 32697 dimkerim 32700 lindsadd 36469 lssats 37870 lpssat 37871 lssatle 37873 lssat 37874 dvhdimlem 40303 dvh3dim3N 40308 mapdindp2 40580 lspindp5 40629 |
Copyright terms: Public domain | W3C validator |