![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspss | Structured version Visualization version GIF version |
Description: Span preserves subset ordering. (spanss 30290 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1193 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → 𝑇 ⊆ 𝑈) | |
2 | sstr2 3951 | . . . . 5 ⊢ (𝑇 ⊆ 𝑈 → (𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → (𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) |
4 | 3 | ss2rabdv 4033 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
5 | intss 4930 | . . 3 ⊢ ({𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} → ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
7 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑊 ∈ LMod) | |
8 | simp3 1138 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑈) | |
9 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑈 ⊆ 𝑉) | |
10 | 8, 9 | sstrd 3954 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑉) |
11 | lspss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
12 | eqid 2736 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
13 | lspss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
14 | 11, 12, 13 | lspval 20436 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → (𝑁‘𝑇) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
15 | 7, 10, 14 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
16 | 11, 12, 13 | lspval 20436 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
17 | 16 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
18 | 6, 15, 17 | 3sstr4d 3991 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {crab 3407 ⊆ wss 3910 ∩ cint 4907 ‘cfv 6496 Basecbs 17083 LModclmod 20322 LSubSpclss 20392 LSpanclspn 20432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-lmod 20324 df-lss 20393 df-lsp 20433 |
This theorem is referenced by: lspun 20448 lspssp 20449 lspprid1 20458 lbspss 20543 lspsolvlem 20603 lspsolv 20604 lsppratlem3 20610 lbsextlem2 20620 lbsextlem3 20621 lbsextlem4 20622 lindfrn 21227 f1lindf 21228 mxidlprm 32237 idlsrgmulrss1 32253 idlsrgmulrss2 32254 lindsunlem 32319 dimkerim 32322 lindsadd 36071 lssats 37474 lpssat 37475 lssatle 37477 lssat 37478 dvhdimlem 39907 dvh3dim3N 39912 mapdindp2 40184 lspindp5 40233 |
Copyright terms: Public domain | W3C validator |