Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspss | Structured version Visualization version GIF version |
Description: Span preserves subset ordering. (spanss 29710 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1192 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → 𝑇 ⊆ 𝑈) | |
2 | sstr2 3928 | . . . . 5 ⊢ (𝑇 ⊆ 𝑈 → (𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → (𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) |
4 | 3 | ss2rabdv 4009 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
5 | intss 4900 | . . 3 ⊢ ({𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} → ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
7 | simp1 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑊 ∈ LMod) | |
8 | simp3 1137 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑈) | |
9 | simp2 1136 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑈 ⊆ 𝑉) | |
10 | 8, 9 | sstrd 3931 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑉) |
11 | lspss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
12 | eqid 2738 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
13 | lspss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
14 | 11, 12, 13 | lspval 20237 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → (𝑁‘𝑇) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
15 | 7, 10, 14 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
16 | 11, 12, 13 | lspval 20237 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
17 | 16 | 3adant3 1131 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
18 | 6, 15, 17 | 3sstr4d 3968 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∩ cint 4879 ‘cfv 6433 Basecbs 16912 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-lmod 20125 df-lss 20194 df-lsp 20234 |
This theorem is referenced by: lspun 20249 lspssp 20250 lspprid1 20259 lbspss 20344 lspsolvlem 20404 lspsolv 20405 lsppratlem3 20411 lbsextlem2 20421 lbsextlem3 20422 lbsextlem4 20423 lindfrn 21028 f1lindf 21029 mxidlprm 31640 idlsrgmulrss1 31656 idlsrgmulrss2 31657 lindsunlem 31705 dimkerim 31708 lindsadd 35770 lssats 37026 lpssat 37027 lssatle 37029 lssat 37030 dvhdimlem 39458 dvh3dim3N 39463 mapdindp2 39735 lspindp5 39784 |
Copyright terms: Public domain | W3C validator |