| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspss | Structured version Visualization version GIF version | ||
| Description: Span preserves subset ordering. (spanss 31275 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → 𝑇 ⊆ 𝑈) | |
| 2 | sstr2 3965 | . . . . 5 ⊢ (𝑇 ⊆ 𝑈 → (𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → (𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) |
| 4 | 3 | ss2rabdv 4051 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
| 5 | intss 4945 | . . 3 ⊢ ({𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} → ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
| 7 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑊 ∈ LMod) | |
| 8 | simp3 1138 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑈) | |
| 9 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑈 ⊆ 𝑉) | |
| 10 | 8, 9 | sstrd 3969 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑉) |
| 11 | lspss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 12 | eqid 2735 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 13 | lspss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 14 | 11, 12, 13 | lspval 20930 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → (𝑁‘𝑇) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
| 15 | 7, 10, 14 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
| 16 | 11, 12, 13 | lspval 20930 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
| 17 | 16 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
| 18 | 6, 15, 17 | 3sstr4d 4014 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 ∩ cint 4922 ‘cfv 6530 Basecbs 17226 LModclmod 20815 LSubSpclss 20886 LSpanclspn 20926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-lmod 20817 df-lss 20887 df-lsp 20927 |
| This theorem is referenced by: lspun 20942 lspssp 20943 lspprid1 20952 lbspss 21038 lspsolvlem 21101 lspsolv 21102 lsppratlem3 21108 lbsextlem2 21118 lbsextlem3 21119 lbsextlem4 21120 lindfrn 21779 f1lindf 21780 mxidlprm 33431 idlsrgmulrss1 33472 idlsrgmulrss2 33473 lindsunlem 33610 dimkerim 33613 lindsadd 37583 lssats 38976 lpssat 38977 lssatle 38979 lssat 38980 dvhdimlem 41409 dvh3dim3N 41414 mapdindp2 41686 lspindp5 41735 |
| Copyright terms: Public domain | W3C validator |