| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspss | Structured version Visualization version GIF version | ||
| Description: Span preserves subset ordering. (spanss 31310 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → 𝑇 ⊆ 𝑈) | |
| 2 | sstr2 3944 | . . . . 5 ⊢ (𝑇 ⊆ 𝑈 → (𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → (𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) |
| 4 | 3 | ss2rabdv 4029 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
| 5 | intss 4922 | . . 3 ⊢ ({𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} → ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
| 7 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑊 ∈ LMod) | |
| 8 | simp3 1138 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑈) | |
| 9 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑈 ⊆ 𝑉) | |
| 10 | 8, 9 | sstrd 3948 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑉) |
| 11 | lspss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 12 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 13 | lspss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 14 | 11, 12, 13 | lspval 20896 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → (𝑁‘𝑇) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
| 15 | 7, 10, 14 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
| 16 | 11, 12, 13 | lspval 20896 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
| 17 | 16 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
| 18 | 6, 15, 17 | 3sstr4d 3993 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ∩ cint 4899 ‘cfv 6486 Basecbs 17138 LModclmod 20781 LSubSpclss 20852 LSpanclspn 20892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-lmod 20783 df-lss 20853 df-lsp 20893 |
| This theorem is referenced by: lspun 20908 lspssp 20909 lspprid1 20918 lbspss 21004 lspsolvlem 21067 lspsolv 21068 lsppratlem3 21074 lbsextlem2 21084 lbsextlem3 21085 lbsextlem4 21086 lindfrn 21746 f1lindf 21747 mxidlprm 33417 idlsrgmulrss1 33458 idlsrgmulrss2 33459 lindsunlem 33596 dimkerim 33599 lindsadd 37592 lssats 38990 lpssat 38991 lssatle 38993 lssat 38994 dvhdimlem 41423 dvh3dim3N 41428 mapdindp2 41700 lspindp5 41749 |
| Copyright terms: Public domain | W3C validator |