![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspss | Structured version Visualization version GIF version |
Description: Span preserves subset ordering. (spanss 31380 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1193 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → 𝑇 ⊆ 𝑈) | |
2 | sstr2 4015 | . . . . 5 ⊢ (𝑇 ⊆ 𝑈 → (𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → (𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) |
4 | 3 | ss2rabdv 4099 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
5 | intss 4993 | . . 3 ⊢ ({𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} → ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡} ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
7 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑊 ∈ LMod) | |
8 | simp3 1138 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑈) | |
9 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑈 ⊆ 𝑉) | |
10 | 8, 9 | sstrd 4019 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑉) |
11 | lspss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
12 | eqid 2740 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
13 | lspss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
14 | 11, 12, 13 | lspval 20996 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → (𝑁‘𝑇) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
15 | 7, 10, 14 | syl2anc 583 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇 ⊆ 𝑡}) |
16 | 11, 12, 13 | lspval 20996 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
17 | 16 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
18 | 6, 15, 17 | 3sstr4d 4056 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 ∩ cint 4970 ‘cfv 6573 Basecbs 17258 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-lmod 20882 df-lss 20953 df-lsp 20993 |
This theorem is referenced by: lspun 21008 lspssp 21009 lspprid1 21018 lbspss 21104 lspsolvlem 21167 lspsolv 21168 lsppratlem3 21174 lbsextlem2 21184 lbsextlem3 21185 lbsextlem4 21186 lindfrn 21864 f1lindf 21865 mxidlprm 33463 idlsrgmulrss1 33504 idlsrgmulrss2 33505 lindsunlem 33637 dimkerim 33640 lindsadd 37573 lssats 38968 lpssat 38969 lssatle 38971 lssat 38972 dvhdimlem 41401 dvh3dim3N 41406 mapdindp2 41678 lspindp5 41727 |
Copyright terms: Public domain | W3C validator |