MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspss Structured version   Visualization version   GIF version

Theorem lspss 20246
Description: Span preserves subset ordering. (spanss 29710 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspss ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))

Proof of Theorem lspss
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1192 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → 𝑇𝑈)
2 sstr2 3928 . . . . 5 (𝑇𝑈 → (𝑈𝑡𝑇𝑡))
31, 2syl 17 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → (𝑈𝑡𝑇𝑡))
43ss2rabdv 4009 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
5 intss 4900 . . 3 ({𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
64, 5syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
7 simp1 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑊 ∈ LMod)
8 simp3 1137 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑇𝑈)
9 simp2 1136 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑈𝑉)
108, 9sstrd 3931 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑇𝑉)
11 lspss.v . . . 4 𝑉 = (Base‘𝑊)
12 eqid 2738 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
13 lspss.n . . . 4 𝑁 = (LSpan‘𝑊)
1411, 12, 13lspval 20237 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → (𝑁𝑇) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
157, 10, 14syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
1611, 12, 13lspval 20237 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
17163adant3 1131 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
186, 15, 173sstr4d 3968 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  wss 3887   cint 4879  cfv 6433  Basecbs 16912  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-lmod 20125  df-lss 20194  df-lsp 20234
This theorem is referenced by:  lspun  20249  lspssp  20250  lspprid1  20259  lbspss  20344  lspsolvlem  20404  lspsolv  20405  lsppratlem3  20411  lbsextlem2  20421  lbsextlem3  20422  lbsextlem4  20423  lindfrn  21028  f1lindf  21029  mxidlprm  31640  idlsrgmulrss1  31656  idlsrgmulrss2  31657  lindsunlem  31705  dimkerim  31708  lindsadd  35770  lssats  37026  lpssat  37027  lssatle  37029  lssat  37030  dvhdimlem  39458  dvh3dim3N  39463  mapdindp2  39735  lspindp5  39784
  Copyright terms: Public domain W3C validator