MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspss Structured version   Visualization version   GIF version

Theorem lspss 19747
Description: Span preserves subset ordering. (spanss 29129 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspss ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))

Proof of Theorem lspss
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1190 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → 𝑇𝑈)
2 sstr2 3949 . . . . 5 (𝑇𝑈 → (𝑈𝑡𝑇𝑡))
31, 2syl 17 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → (𝑈𝑡𝑇𝑡))
43ss2rabdv 4027 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
5 intss 4872 . . 3 ({𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
64, 5syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
7 simp1 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑊 ∈ LMod)
8 simp3 1135 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑇𝑈)
9 simp2 1134 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑈𝑉)
108, 9sstrd 3952 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑇𝑉)
11 lspss.v . . . 4 𝑉 = (Base‘𝑊)
12 eqid 2822 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
13 lspss.n . . . 4 𝑁 = (LSpan‘𝑊)
1411, 12, 13lspval 19738 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → (𝑁𝑇) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
157, 10, 14syl2anc 587 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
1611, 12, 13lspval 19738 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
17163adant3 1129 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
186, 15, 173sstr4d 3989 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  {crab 3134  wss 3908   cint 4851  cfv 6334  Basecbs 16474  LModclmod 19625  LSubSpclss 19694  LSpanclspn 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-lmod 19627  df-lss 19695  df-lsp 19735
This theorem is referenced by:  lspun  19750  lspssp  19751  lspprid1  19760  lbspss  19845  lspsolvlem  19905  lspsolv  19906  lsppratlem3  19912  lbsextlem2  19922  lbsextlem3  19923  lbsextlem4  19924  lindfrn  20508  f1lindf  20509  mxidlprm  31019  idlsrgmulrss1  31035  idlsrgmulrss2  31036  lindsunlem  31077  dimkerim  31080  lindsadd  35009  lssats  36267  lpssat  36268  lssatle  36270  lssat  36271  dvhdimlem  38699  dvh3dim3N  38704  mapdindp2  38976  lspindp5  39025
  Copyright terms: Public domain W3C validator