MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspss Structured version   Visualization version   GIF version

Theorem lspss 20919
Description: Span preserves subset ordering. (spanss 31330 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspss ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))

Proof of Theorem lspss
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1194 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → 𝑇𝑈)
2 sstr2 3937 . . . . 5 (𝑇𝑈 → (𝑈𝑡𝑇𝑡))
31, 2syl 17 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → (𝑈𝑡𝑇𝑡))
43ss2rabdv 4024 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
5 intss 4919 . . 3 ({𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
64, 5syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
7 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑊 ∈ LMod)
8 simp3 1138 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑇𝑈)
9 simp2 1137 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑈𝑉)
108, 9sstrd 3941 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑇𝑉)
11 lspss.v . . . 4 𝑉 = (Base‘𝑊)
12 eqid 2733 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
13 lspss.n . . . 4 𝑁 = (LSpan‘𝑊)
1411, 12, 13lspval 20910 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → (𝑁𝑇) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
157, 10, 14syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
1611, 12, 13lspval 20910 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
17163adant3 1132 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
186, 15, 173sstr4d 3986 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  wss 3898   cint 4897  cfv 6486  Basecbs 17122  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-lmod 20797  df-lss 20867  df-lsp 20907
This theorem is referenced by:  lspun  20922  lspssp  20923  lspprid1  20932  lbspss  21018  lspsolvlem  21081  lspsolv  21082  lsppratlem3  21088  lbsextlem2  21098  lbsextlem3  21099  lbsextlem4  21100  lindfrn  21760  f1lindf  21761  mxidlprm  33442  idlsrgmulrss1  33483  idlsrgmulrss2  33484  lindsunlem  33658  dimkerim  33661  lindsadd  37673  lssats  39131  lpssat  39132  lssatle  39134  lssat  39135  dvhdimlem  41563  dvh3dim3N  41568  mapdindp2  41840  lspindp5  41889
  Copyright terms: Public domain W3C validator