MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunccl Structured version   Visualization version   GIF version

Theorem wunccl 10769
Description: The weak universe closure of a set is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wunccl (𝐴𝑉 → (wUniCl‘𝐴) ∈ WUni)

Proof of Theorem wunccl
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 wuncval 10767 . 2 (𝐴𝑉 → (wUniCl‘𝐴) = {𝑢 ∈ WUni ∣ 𝐴𝑢})
2 ssrab2 4073 . . 3 {𝑢 ∈ WUni ∣ 𝐴𝑢} ⊆ WUni
3 wunex 10764 . . . 4 (𝐴𝑉 → ∃𝑢 ∈ WUni 𝐴𝑢)
4 rabn0 4387 . . . 4 ({𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅ ↔ ∃𝑢 ∈ WUni 𝐴𝑢)
53, 4sylibr 233 . . 3 (𝐴𝑉 → {𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅)
6 intwun 10760 . . 3 (({𝑢 ∈ WUni ∣ 𝐴𝑢} ⊆ WUni ∧ {𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅) → {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ WUni)
72, 5, 6sylancr 585 . 2 (𝐴𝑉 {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ WUni)
81, 7eqeltrd 2825 1 (𝐴𝑉 → (wUniCl‘𝐴) ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wne 2929  wrex 3059  {crab 3418  wss 3944  c0 4322   cint 4950  cfv 6549  WUnicwun 10725  wUniClcwunm 10726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-wun 10727  df-wunc 10728
This theorem is referenced by:  wuncidm  10771  wuncval2  10772
  Copyright terms: Public domain W3C validator