MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunccl Structured version   Visualization version   GIF version

Theorem wunccl 10160
Description: The weak universe closure of a set is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wunccl (𝐴𝑉 → (wUniCl‘𝐴) ∈ WUni)

Proof of Theorem wunccl
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 wuncval 10158 . 2 (𝐴𝑉 → (wUniCl‘𝐴) = {𝑢 ∈ WUni ∣ 𝐴𝑢})
2 ssrab2 4042 . . 3 {𝑢 ∈ WUni ∣ 𝐴𝑢} ⊆ WUni
3 wunex 10155 . . . 4 (𝐴𝑉 → ∃𝑢 ∈ WUni 𝐴𝑢)
4 rabn0 4322 . . . 4 ({𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅ ↔ ∃𝑢 ∈ WUni 𝐴𝑢)
53, 4sylibr 237 . . 3 (𝐴𝑉 → {𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅)
6 intwun 10151 . . 3 (({𝑢 ∈ WUni ∣ 𝐴𝑢} ⊆ WUni ∧ {𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅) → {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ WUni)
72, 5, 6sylancr 590 . 2 (𝐴𝑉 {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ WUni)
81, 7eqeltrd 2916 1 (𝐴𝑉 → (wUniCl‘𝐴) ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2115  wne 3014  wrex 3134  {crab 3137  wss 3919  c0 4276   cint 4863  cfv 6344  WUnicwun 10116  wUniClcwunm 10117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-om 7572  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-wun 10118  df-wunc 10119
This theorem is referenced by:  wuncidm  10162  wuncval2  10163
  Copyright terms: Public domain W3C validator