![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunccl | Structured version Visualization version GIF version |
Description: The weak universe closure of a set is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wunccl | ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) ∈ WUni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wuncval 10767 | . 2 ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) = ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) | |
2 | ssrab2 4073 | . . 3 ⊢ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ⊆ WUni | |
3 | wunex 10764 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑢 ∈ WUni 𝐴 ⊆ 𝑢) | |
4 | rabn0 4387 | . . . 4 ⊢ ({𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ≠ ∅ ↔ ∃𝑢 ∈ WUni 𝐴 ⊆ 𝑢) | |
5 | 3, 4 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ≠ ∅) |
6 | intwun 10760 | . . 3 ⊢ (({𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ⊆ WUni ∧ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ≠ ∅) → ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ∈ WUni) | |
7 | 2, 5, 6 | sylancr 585 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ∈ WUni) |
8 | 1, 7 | eqeltrd 2825 | 1 ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) ∈ WUni) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 {crab 3418 ⊆ wss 3944 ∅c0 4322 ∩ cint 4950 ‘cfv 6549 WUnicwun 10725 wUniClcwunm 10726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-wun 10727 df-wunc 10728 |
This theorem is referenced by: wuncidm 10771 wuncval2 10772 |
Copyright terms: Public domain | W3C validator |