MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunccl Structured version   Visualization version   GIF version

Theorem wunccl 10657
Description: The weak universe closure of a set is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wunccl (𝐴𝑉 → (wUniCl‘𝐴) ∈ WUni)

Proof of Theorem wunccl
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 wuncval 10655 . 2 (𝐴𝑉 → (wUniCl‘𝐴) = {𝑢 ∈ WUni ∣ 𝐴𝑢})
2 ssrab2 4033 . . 3 {𝑢 ∈ WUni ∣ 𝐴𝑢} ⊆ WUni
3 wunex 10652 . . . 4 (𝐴𝑉 → ∃𝑢 ∈ WUni 𝐴𝑢)
4 rabn0 4342 . . . 4 ({𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅ ↔ ∃𝑢 ∈ WUni 𝐴𝑢)
53, 4sylibr 234 . . 3 (𝐴𝑉 → {𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅)
6 intwun 10648 . . 3 (({𝑢 ∈ WUni ∣ 𝐴𝑢} ⊆ WUni ∧ {𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅) → {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ WUni)
72, 5, 6sylancr 587 . 2 (𝐴𝑉 {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ WUni)
81, 7eqeltrd 2828 1 (𝐴𝑉 → (wUniCl‘𝐴) ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  wrex 3053  {crab 3396  wss 3905  c0 4286   cint 4899  cfv 6486  WUnicwun 10613  wUniClcwunm 10614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-wun 10615  df-wunc 10616
This theorem is referenced by:  wuncidm  10659  wuncval2  10660
  Copyright terms: Public domain W3C validator