![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorinv | Structured version Visualization version GIF version |
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorinv | ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 13507 | . . . 4 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
2 | ffn 6747 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
3 | ovelrn 7626 | . . . 4 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)) |
5 | ioorf.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
6 | 5 | ioorinv2 25629 | . . . . . . . 8 ⊢ ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
7 | 6 | fveq2d 6924 | . . . . . . 7 ⊢ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = ((,)‘〈𝑎, 𝑏〉)) |
8 | df-ov 7451 | . . . . . . 7 ⊢ (𝑎(,)𝑏) = ((,)‘〈𝑎, 𝑏〉) | |
9 | 7, 8 | eqtr4di 2798 | . . . . . 6 ⊢ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)) |
10 | df-ne 2947 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
11 | neeq1 3009 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) | |
12 | 10, 11 | bitr3id 285 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) |
13 | 2fveq3 6925 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → ((,)‘(𝐹‘𝐴)) = ((,)‘(𝐹‘(𝑎(,)𝑏)))) | |
14 | id 22 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → 𝐴 = (𝑎(,)𝑏)) | |
15 | 13, 14 | eqeq12d 2756 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (((,)‘(𝐹‘𝐴)) = 𝐴 ↔ ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))) |
16 | 12, 15 | imbi12d 344 | . . . . . 6 ⊢ (𝐴 = (𝑎(,)𝑏) → ((¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴) ↔ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)))) |
17 | 9, 16 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
18 | 17 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴))) |
19 | 18 | rexlimivv 3207 | . . 3 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
20 | 4, 19 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ran (,) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
21 | ioorebas 13511 | . . . . . . 7 ⊢ (0(,)0) ∈ ran (,) | |
22 | 5 | ioorval 25628 | . . . . . . 7 ⊢ ((0(,)0) ∈ ran (,) → (𝐹‘(0(,)0)) = if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉)) |
23 | 21, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐹‘(0(,)0)) = if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉) |
24 | iooid 13435 | . . . . . . 7 ⊢ (0(,)0) = ∅ | |
25 | 24 | iftruei 4555 | . . . . . 6 ⊢ if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉) = 〈0, 0〉 |
26 | 23, 25 | eqtri 2768 | . . . . 5 ⊢ (𝐹‘(0(,)0)) = 〈0, 0〉 |
27 | 26 | fveq2i 6923 | . . . 4 ⊢ ((,)‘(𝐹‘(0(,)0))) = ((,)‘〈0, 0〉) |
28 | df-ov 7451 | . . . 4 ⊢ (0(,)0) = ((,)‘〈0, 0〉) | |
29 | 27, 28 | eqtr4i 2771 | . . 3 ⊢ ((,)‘(𝐹‘(0(,)0))) = (0(,)0) |
30 | 24 | eqeq2i 2753 | . . . . . 6 ⊢ (𝐴 = (0(,)0) ↔ 𝐴 = ∅) |
31 | 30 | biimpri 228 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 = (0(,)0)) |
32 | 31 | fveq2d 6924 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = (𝐹‘(0(,)0))) |
33 | 32 | fveq2d 6924 | . . 3 ⊢ (𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = ((,)‘(𝐹‘(0(,)0)))) |
34 | 29, 33, 31 | 3eqtr4a 2806 | . 2 ⊢ (𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴) |
35 | 20, 34 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ∅c0 4352 ifcif 4548 𝒫 cpw 4622 〈cop 4654 ↦ cmpt 5249 × cxp 5698 ran crn 5701 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supcsup 9509 infcinf 9510 ℝcr 11183 0cc0 11184 ℝ*cxr 11323 < clt 11324 (,)cioo 13407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-ioo 13411 |
This theorem is referenced by: uniioombllem2 25637 |
Copyright terms: Public domain | W3C validator |