MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorinv Structured version   Visualization version   GIF version

Theorem ioorinv 25493
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorinv (𝐴 ∈ ran (,) → ((,)‘(𝐹𝐴)) = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ioorinv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 13368 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6656 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 7529 . . . 4 ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)))
41, 2, 3mp2b 10 . . 3 (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))
5 ioorf.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
65ioorinv2 25492 . . . . . . . 8 ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = ⟨𝑎, 𝑏⟩)
76fveq2d 6830 . . . . . . 7 ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = ((,)‘⟨𝑎, 𝑏⟩))
8 df-ov 7356 . . . . . . 7 (𝑎(,)𝑏) = ((,)‘⟨𝑎, 𝑏⟩)
97, 8eqtr4di 2782 . . . . . 6 ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))
10 df-ne 2926 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
11 neeq1 2987 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
1210, 11bitr3id 285 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
13 2fveq3 6831 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → ((,)‘(𝐹𝐴)) = ((,)‘(𝐹‘(𝑎(,)𝑏))))
14 id 22 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → 𝐴 = (𝑎(,)𝑏))
1513, 14eqeq12d 2745 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (((,)‘(𝐹𝐴)) = 𝐴 ↔ ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)))
1612, 15imbi12d 344 . . . . . 6 (𝐴 = (𝑎(,)𝑏) → ((¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴) ↔ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))))
179, 16mpbiri 258 . . . . 5 (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
1817a1i 11 . . . 4 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴)))
1918rexlimivv 3171 . . 3 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
204, 19sylbi 217 . 2 (𝐴 ∈ ran (,) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
21 ioorebas 13372 . . . . . . 7 (0(,)0) ∈ ran (,)
225ioorval 25491 . . . . . . 7 ((0(,)0) ∈ ran (,) → (𝐹‘(0(,)0)) = if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩))
2321, 22ax-mp 5 . . . . . 6 (𝐹‘(0(,)0)) = if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩)
24 iooid 13294 . . . . . . 7 (0(,)0) = ∅
2524iftruei 4485 . . . . . 6 if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩) = ⟨0, 0⟩
2623, 25eqtri 2752 . . . . 5 (𝐹‘(0(,)0)) = ⟨0, 0⟩
2726fveq2i 6829 . . . 4 ((,)‘(𝐹‘(0(,)0))) = ((,)‘⟨0, 0⟩)
28 df-ov 7356 . . . 4 (0(,)0) = ((,)‘⟨0, 0⟩)
2927, 28eqtr4i 2755 . . 3 ((,)‘(𝐹‘(0(,)0))) = (0(,)0)
3024eqeq2i 2742 . . . . . 6 (𝐴 = (0(,)0) ↔ 𝐴 = ∅)
3130biimpri 228 . . . . 5 (𝐴 = ∅ → 𝐴 = (0(,)0))
3231fveq2d 6830 . . . 4 (𝐴 = ∅ → (𝐹𝐴) = (𝐹‘(0(,)0)))
3332fveq2d 6830 . . 3 (𝐴 = ∅ → ((,)‘(𝐹𝐴)) = ((,)‘(𝐹‘(0(,)0))))
3429, 33, 313eqtr4a 2790 . 2 (𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴)
3520, 34pm2.61d2 181 1 (𝐴 ∈ ran (,) → ((,)‘(𝐹𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  c0 4286  ifcif 4478  𝒫 cpw 4553  cop 4585  cmpt 5176   × cxp 5621  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  infcinf 9350  cr 11027  0cc0 11028  *cxr 11167   < clt 11168  (,)cioo 13266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-ioo 13270
This theorem is referenced by:  uniioombllem2  25500
  Copyright terms: Public domain W3C validator