| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioorinv | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| Ref | Expression |
|---|---|
| ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
| Ref | Expression |
|---|---|
| ioorinv | ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioof 13415 | . . . 4 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 2 | ffn 6691 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 3 | ovelrn 7568 | . . . 4 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))) | |
| 4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)) |
| 5 | ioorf.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
| 6 | 5 | ioorinv2 25483 | . . . . . . . 8 ⊢ ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
| 7 | 6 | fveq2d 6865 | . . . . . . 7 ⊢ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = ((,)‘〈𝑎, 𝑏〉)) |
| 8 | df-ov 7393 | . . . . . . 7 ⊢ (𝑎(,)𝑏) = ((,)‘〈𝑎, 𝑏〉) | |
| 9 | 7, 8 | eqtr4di 2783 | . . . . . 6 ⊢ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)) |
| 10 | df-ne 2927 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 11 | neeq1 2988 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) | |
| 12 | 10, 11 | bitr3id 285 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) |
| 13 | 2fveq3 6866 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → ((,)‘(𝐹‘𝐴)) = ((,)‘(𝐹‘(𝑎(,)𝑏)))) | |
| 14 | id 22 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → 𝐴 = (𝑎(,)𝑏)) | |
| 15 | 13, 14 | eqeq12d 2746 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (((,)‘(𝐹‘𝐴)) = 𝐴 ↔ ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))) |
| 16 | 12, 15 | imbi12d 344 | . . . . . 6 ⊢ (𝐴 = (𝑎(,)𝑏) → ((¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴) ↔ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)))) |
| 17 | 9, 16 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
| 18 | 17 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴))) |
| 19 | 18 | rexlimivv 3180 | . . 3 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
| 20 | 4, 19 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ran (,) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
| 21 | ioorebas 13419 | . . . . . . 7 ⊢ (0(,)0) ∈ ran (,) | |
| 22 | 5 | ioorval 25482 | . . . . . . 7 ⊢ ((0(,)0) ∈ ran (,) → (𝐹‘(0(,)0)) = if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉)) |
| 23 | 21, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐹‘(0(,)0)) = if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉) |
| 24 | iooid 13341 | . . . . . . 7 ⊢ (0(,)0) = ∅ | |
| 25 | 24 | iftruei 4498 | . . . . . 6 ⊢ if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉) = 〈0, 0〉 |
| 26 | 23, 25 | eqtri 2753 | . . . . 5 ⊢ (𝐹‘(0(,)0)) = 〈0, 0〉 |
| 27 | 26 | fveq2i 6864 | . . . 4 ⊢ ((,)‘(𝐹‘(0(,)0))) = ((,)‘〈0, 0〉) |
| 28 | df-ov 7393 | . . . 4 ⊢ (0(,)0) = ((,)‘〈0, 0〉) | |
| 29 | 27, 28 | eqtr4i 2756 | . . 3 ⊢ ((,)‘(𝐹‘(0(,)0))) = (0(,)0) |
| 30 | 24 | eqeq2i 2743 | . . . . . 6 ⊢ (𝐴 = (0(,)0) ↔ 𝐴 = ∅) |
| 31 | 30 | biimpri 228 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 = (0(,)0)) |
| 32 | 31 | fveq2d 6865 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = (𝐹‘(0(,)0))) |
| 33 | 32 | fveq2d 6865 | . . 3 ⊢ (𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = ((,)‘(𝐹‘(0(,)0)))) |
| 34 | 29, 33, 31 | 3eqtr4a 2791 | . 2 ⊢ (𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴) |
| 35 | 20, 34 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ∅c0 4299 ifcif 4491 𝒫 cpw 4566 〈cop 4598 ↦ cmpt 5191 × cxp 5639 ran crn 5642 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supcsup 9398 infcinf 9399 ℝcr 11074 0cc0 11075 ℝ*cxr 11214 < clt 11215 (,)cioo 13313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-ioo 13317 |
| This theorem is referenced by: uniioombllem2 25491 |
| Copyright terms: Public domain | W3C validator |