Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioorinv | Structured version Visualization version GIF version |
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorinv | ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 13108 | . . . 4 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
2 | ffn 6584 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
3 | ovelrn 7426 | . . . 4 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)) |
5 | ioorf.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
6 | 5 | ioorinv2 24644 | . . . . . . . 8 ⊢ ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
7 | 6 | fveq2d 6760 | . . . . . . 7 ⊢ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = ((,)‘〈𝑎, 𝑏〉)) |
8 | df-ov 7258 | . . . . . . 7 ⊢ (𝑎(,)𝑏) = ((,)‘〈𝑎, 𝑏〉) | |
9 | 7, 8 | eqtr4di 2797 | . . . . . 6 ⊢ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)) |
10 | df-ne 2943 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
11 | neeq1 3005 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) | |
12 | 10, 11 | bitr3id 284 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) |
13 | 2fveq3 6761 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → ((,)‘(𝐹‘𝐴)) = ((,)‘(𝐹‘(𝑎(,)𝑏)))) | |
14 | id 22 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → 𝐴 = (𝑎(,)𝑏)) | |
15 | 13, 14 | eqeq12d 2754 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (((,)‘(𝐹‘𝐴)) = 𝐴 ↔ ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))) |
16 | 12, 15 | imbi12d 344 | . . . . . 6 ⊢ (𝐴 = (𝑎(,)𝑏) → ((¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴) ↔ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)))) |
17 | 9, 16 | mpbiri 257 | . . . . 5 ⊢ (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
18 | 17 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴))) |
19 | 18 | rexlimivv 3220 | . . 3 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
20 | 4, 19 | sylbi 216 | . 2 ⊢ (𝐴 ∈ ran (,) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
21 | ioorebas 13112 | . . . . . . 7 ⊢ (0(,)0) ∈ ran (,) | |
22 | 5 | ioorval 24643 | . . . . . . 7 ⊢ ((0(,)0) ∈ ran (,) → (𝐹‘(0(,)0)) = if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉)) |
23 | 21, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐹‘(0(,)0)) = if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉) |
24 | iooid 13036 | . . . . . . 7 ⊢ (0(,)0) = ∅ | |
25 | 24 | iftruei 4463 | . . . . . 6 ⊢ if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉) = 〈0, 0〉 |
26 | 23, 25 | eqtri 2766 | . . . . 5 ⊢ (𝐹‘(0(,)0)) = 〈0, 0〉 |
27 | 26 | fveq2i 6759 | . . . 4 ⊢ ((,)‘(𝐹‘(0(,)0))) = ((,)‘〈0, 0〉) |
28 | df-ov 7258 | . . . 4 ⊢ (0(,)0) = ((,)‘〈0, 0〉) | |
29 | 27, 28 | eqtr4i 2769 | . . 3 ⊢ ((,)‘(𝐹‘(0(,)0))) = (0(,)0) |
30 | 24 | eqeq2i 2751 | . . . . . 6 ⊢ (𝐴 = (0(,)0) ↔ 𝐴 = ∅) |
31 | 30 | biimpri 227 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 = (0(,)0)) |
32 | 31 | fveq2d 6760 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = (𝐹‘(0(,)0))) |
33 | 32 | fveq2d 6760 | . . 3 ⊢ (𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = ((,)‘(𝐹‘(0(,)0)))) |
34 | 29, 33, 31 | 3eqtr4a 2805 | . 2 ⊢ (𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴) |
35 | 20, 34 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ∅c0 4253 ifcif 4456 𝒫 cpw 4530 〈cop 4564 ↦ cmpt 5153 × cxp 5578 ran crn 5581 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 infcinf 9130 ℝcr 10801 0cc0 10802 ℝ*cxr 10939 < clt 10940 (,)cioo 13008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-ioo 13012 |
This theorem is referenced by: uniioombllem2 24652 |
Copyright terms: Public domain | W3C validator |