![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorinv | Structured version Visualization version GIF version |
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorinv | ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 13484 | . . . 4 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
2 | ffn 6737 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
3 | ovelrn 7609 | . . . 4 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)) |
5 | ioorf.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
6 | 5 | ioorinv2 25624 | . . . . . . . 8 ⊢ ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
7 | 6 | fveq2d 6911 | . . . . . . 7 ⊢ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = ((,)‘〈𝑎, 𝑏〉)) |
8 | df-ov 7434 | . . . . . . 7 ⊢ (𝑎(,)𝑏) = ((,)‘〈𝑎, 𝑏〉) | |
9 | 7, 8 | eqtr4di 2793 | . . . . . 6 ⊢ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)) |
10 | df-ne 2939 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
11 | neeq1 3001 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) | |
12 | 10, 11 | bitr3id 285 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) |
13 | 2fveq3 6912 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → ((,)‘(𝐹‘𝐴)) = ((,)‘(𝐹‘(𝑎(,)𝑏)))) | |
14 | id 22 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → 𝐴 = (𝑎(,)𝑏)) | |
15 | 13, 14 | eqeq12d 2751 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (((,)‘(𝐹‘𝐴)) = 𝐴 ↔ ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))) |
16 | 12, 15 | imbi12d 344 | . . . . . 6 ⊢ (𝐴 = (𝑎(,)𝑏) → ((¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴) ↔ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)))) |
17 | 9, 16 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
18 | 17 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴))) |
19 | 18 | rexlimivv 3199 | . . 3 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
20 | 4, 19 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ran (,) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
21 | ioorebas 13488 | . . . . . . 7 ⊢ (0(,)0) ∈ ran (,) | |
22 | 5 | ioorval 25623 | . . . . . . 7 ⊢ ((0(,)0) ∈ ran (,) → (𝐹‘(0(,)0)) = if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉)) |
23 | 21, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐹‘(0(,)0)) = if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉) |
24 | iooid 13412 | . . . . . . 7 ⊢ (0(,)0) = ∅ | |
25 | 24 | iftruei 4538 | . . . . . 6 ⊢ if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉) = 〈0, 0〉 |
26 | 23, 25 | eqtri 2763 | . . . . 5 ⊢ (𝐹‘(0(,)0)) = 〈0, 0〉 |
27 | 26 | fveq2i 6910 | . . . 4 ⊢ ((,)‘(𝐹‘(0(,)0))) = ((,)‘〈0, 0〉) |
28 | df-ov 7434 | . . . 4 ⊢ (0(,)0) = ((,)‘〈0, 0〉) | |
29 | 27, 28 | eqtr4i 2766 | . . 3 ⊢ ((,)‘(𝐹‘(0(,)0))) = (0(,)0) |
30 | 24 | eqeq2i 2748 | . . . . . 6 ⊢ (𝐴 = (0(,)0) ↔ 𝐴 = ∅) |
31 | 30 | biimpri 228 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 = (0(,)0)) |
32 | 31 | fveq2d 6911 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = (𝐹‘(0(,)0))) |
33 | 32 | fveq2d 6911 | . . 3 ⊢ (𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = ((,)‘(𝐹‘(0(,)0)))) |
34 | 29, 33, 31 | 3eqtr4a 2801 | . 2 ⊢ (𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴) |
35 | 20, 34 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 ∅c0 4339 ifcif 4531 𝒫 cpw 4605 〈cop 4637 ↦ cmpt 5231 × cxp 5687 ran crn 5690 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 supcsup 9478 infcinf 9479 ℝcr 11152 0cc0 11153 ℝ*cxr 11292 < clt 11293 (,)cioo 13384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-ioo 13388 |
This theorem is referenced by: uniioombllem2 25632 |
Copyright terms: Public domain | W3C validator |