MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorinv Structured version   Visualization version   GIF version

Theorem ioorinv 23564
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorinv (𝐴 ∈ ran (,) → ((,)‘(𝐹𝐴)) = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ioorinv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12477 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6185 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 6957 . . . 4 ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)))
41, 2, 3mp2b 10 . . 3 (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))
5 ioorf.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
65ioorinv2 23563 . . . . . . . 8 ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = ⟨𝑎, 𝑏⟩)
76fveq2d 6336 . . . . . . 7 ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = ((,)‘⟨𝑎, 𝑏⟩))
8 df-ov 6796 . . . . . . 7 (𝑎(,)𝑏) = ((,)‘⟨𝑎, 𝑏⟩)
97, 8syl6eqr 2823 . . . . . 6 ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))
10 df-ne 2944 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
11 neeq1 3005 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
1210, 11syl5bbr 274 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
13 fveq2 6332 . . . . . . . . 9 (𝐴 = (𝑎(,)𝑏) → (𝐹𝐴) = (𝐹‘(𝑎(,)𝑏)))
1413fveq2d 6336 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → ((,)‘(𝐹𝐴)) = ((,)‘(𝐹‘(𝑎(,)𝑏))))
15 id 22 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → 𝐴 = (𝑎(,)𝑏))
1614, 15eqeq12d 2786 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (((,)‘(𝐹𝐴)) = 𝐴 ↔ ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)))
1712, 16imbi12d 333 . . . . . 6 (𝐴 = (𝑎(,)𝑏) → ((¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴) ↔ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))))
189, 17mpbiri 248 . . . . 5 (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
1918a1i 11 . . . 4 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴)))
2019rexlimivv 3184 . . 3 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
214, 20sylbi 207 . 2 (𝐴 ∈ ran (,) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
22 ioorebas 12481 . . . . . . 7 (0(,)0) ∈ ran (,)
235ioorval 23562 . . . . . . 7 ((0(,)0) ∈ ran (,) → (𝐹‘(0(,)0)) = if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩))
2422, 23ax-mp 5 . . . . . 6 (𝐹‘(0(,)0)) = if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩)
25 iooid 12408 . . . . . . 7 (0(,)0) = ∅
2625iftruei 4232 . . . . . 6 if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩) = ⟨0, 0⟩
2724, 26eqtri 2793 . . . . 5 (𝐹‘(0(,)0)) = ⟨0, 0⟩
2827fveq2i 6335 . . . 4 ((,)‘(𝐹‘(0(,)0))) = ((,)‘⟨0, 0⟩)
29 df-ov 6796 . . . 4 (0(,)0) = ((,)‘⟨0, 0⟩)
3028, 29eqtr4i 2796 . . 3 ((,)‘(𝐹‘(0(,)0))) = (0(,)0)
3125eqeq2i 2783 . . . . . 6 (𝐴 = (0(,)0) ↔ 𝐴 = ∅)
3231biimpri 218 . . . . 5 (𝐴 = ∅ → 𝐴 = (0(,)0))
3332fveq2d 6336 . . . 4 (𝐴 = ∅ → (𝐹𝐴) = (𝐹‘(0(,)0)))
3433fveq2d 6336 . . 3 (𝐴 = ∅ → ((,)‘(𝐹𝐴)) = ((,)‘(𝐹‘(0(,)0))))
3530, 34, 323eqtr4a 2831 . 2 (𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴)
3621, 35pm2.61d2 173 1 (𝐴 ∈ ran (,) → ((,)‘(𝐹𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wrex 3062  c0 4063  ifcif 4225  𝒫 cpw 4297  cop 4322  cmpt 4863   × cxp 5247  ran crn 5250   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  supcsup 8502  infcinf 8503  cr 10137  0cc0 10138  *cxr 10275   < clt 10276  (,)cioo 12380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-ioo 12384
This theorem is referenced by:  uniioombllem2  23571
  Copyright terms: Public domain W3C validator