MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorinv Structured version   Visualization version   GIF version

Theorem ioorinv 24321
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorinv (𝐴 ∈ ran (,) → ((,)‘(𝐹𝐴)) = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ioorinv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12914 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6498 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 7334 . . . 4 ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)))
41, 2, 3mp2b 10 . . 3 (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))
5 ioorf.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
65ioorinv2 24320 . . . . . . . 8 ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = ⟨𝑎, 𝑏⟩)
76fveq2d 6672 . . . . . . 7 ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = ((,)‘⟨𝑎, 𝑏⟩))
8 df-ov 7167 . . . . . . 7 (𝑎(,)𝑏) = ((,)‘⟨𝑎, 𝑏⟩)
97, 8eqtr4di 2791 . . . . . 6 ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))
10 df-ne 2935 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
11 neeq1 2996 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
1210, 11bitr3id 288 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
13 2fveq3 6673 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → ((,)‘(𝐹𝐴)) = ((,)‘(𝐹‘(𝑎(,)𝑏))))
14 id 22 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → 𝐴 = (𝑎(,)𝑏))
1513, 14eqeq12d 2754 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (((,)‘(𝐹𝐴)) = 𝐴 ↔ ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)))
1612, 15imbi12d 348 . . . . . 6 (𝐴 = (𝑎(,)𝑏) → ((¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴) ↔ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))))
179, 16mpbiri 261 . . . . 5 (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
1817a1i 11 . . . 4 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴)))
1918rexlimivv 3201 . . 3 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
204, 19sylbi 220 . 2 (𝐴 ∈ ran (,) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
21 ioorebas 12918 . . . . . . 7 (0(,)0) ∈ ran (,)
225ioorval 24319 . . . . . . 7 ((0(,)0) ∈ ran (,) → (𝐹‘(0(,)0)) = if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩))
2321, 22ax-mp 5 . . . . . 6 (𝐹‘(0(,)0)) = if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩)
24 iooid 12842 . . . . . . 7 (0(,)0) = ∅
2524iftruei 4418 . . . . . 6 if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩) = ⟨0, 0⟩
2623, 25eqtri 2761 . . . . 5 (𝐹‘(0(,)0)) = ⟨0, 0⟩
2726fveq2i 6671 . . . 4 ((,)‘(𝐹‘(0(,)0))) = ((,)‘⟨0, 0⟩)
28 df-ov 7167 . . . 4 (0(,)0) = ((,)‘⟨0, 0⟩)
2927, 28eqtr4i 2764 . . 3 ((,)‘(𝐹‘(0(,)0))) = (0(,)0)
3024eqeq2i 2751 . . . . . 6 (𝐴 = (0(,)0) ↔ 𝐴 = ∅)
3130biimpri 231 . . . . 5 (𝐴 = ∅ → 𝐴 = (0(,)0))
3231fveq2d 6672 . . . 4 (𝐴 = ∅ → (𝐹𝐴) = (𝐹‘(0(,)0)))
3332fveq2d 6672 . . 3 (𝐴 = ∅ → ((,)‘(𝐹𝐴)) = ((,)‘(𝐹‘(0(,)0))))
3429, 33, 313eqtr4a 2799 . 2 (𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴)
3520, 34pm2.61d2 184 1 (𝐴 ∈ ran (,) → ((,)‘(𝐹𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wne 2934  wrex 3054  c0 4209  ifcif 4411  𝒫 cpw 4485  cop 4519  cmpt 5107   × cxp 5517  ran crn 5520   Fn wfn 6328  wf 6329  cfv 6333  (class class class)co 7164  supcsup 8970  infcinf 8971  cr 10607  0cc0 10608  *cxr 10745   < clt 10746  (,)cioo 12814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-n0 11970  df-z 12056  df-uz 12318  df-q 12424  df-ioo 12818
This theorem is referenced by:  uniioombllem2  24328
  Copyright terms: Public domain W3C validator