![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorinv | Structured version Visualization version GIF version |
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorinv | ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 12517 | . . . 4 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
2 | ffn 6254 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
3 | ovelrn 7042 | . . . 4 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)) |
5 | ioorf.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
6 | 5 | ioorinv2 23680 | . . . . . . . 8 ⊢ ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
7 | 6 | fveq2d 6413 | . . . . . . 7 ⊢ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = ((,)‘〈𝑎, 𝑏〉)) |
8 | df-ov 6879 | . . . . . . 7 ⊢ (𝑎(,)𝑏) = ((,)‘〈𝑎, 𝑏〉) | |
9 | 7, 8 | syl6eqr 2849 | . . . . . 6 ⊢ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)) |
10 | df-ne 2970 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
11 | neeq1 3031 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) | |
12 | 10, 11 | syl5bbr 277 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) |
13 | 2fveq3 6414 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → ((,)‘(𝐹‘𝐴)) = ((,)‘(𝐹‘(𝑎(,)𝑏)))) | |
14 | id 22 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → 𝐴 = (𝑎(,)𝑏)) | |
15 | 13, 14 | eqeq12d 2812 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (((,)‘(𝐹‘𝐴)) = 𝐴 ↔ ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))) |
16 | 12, 15 | imbi12d 336 | . . . . . 6 ⊢ (𝐴 = (𝑎(,)𝑏) → ((¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴) ↔ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)))) |
17 | 9, 16 | mpbiri 250 | . . . . 5 ⊢ (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
18 | 17 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴))) |
19 | 18 | rexlimivv 3215 | . . 3 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
20 | 4, 19 | sylbi 209 | . 2 ⊢ (𝐴 ∈ ran (,) → (¬ 𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴)) |
21 | ioorebas 12521 | . . . . . . 7 ⊢ (0(,)0) ∈ ran (,) | |
22 | 5 | ioorval 23679 | . . . . . . 7 ⊢ ((0(,)0) ∈ ran (,) → (𝐹‘(0(,)0)) = if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉)) |
23 | 21, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐹‘(0(,)0)) = if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉) |
24 | iooid 12448 | . . . . . . 7 ⊢ (0(,)0) = ∅ | |
25 | 24 | iftruei 4282 | . . . . . 6 ⊢ if((0(,)0) = ∅, 〈0, 0〉, 〈inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )〉) = 〈0, 0〉 |
26 | 23, 25 | eqtri 2819 | . . . . 5 ⊢ (𝐹‘(0(,)0)) = 〈0, 0〉 |
27 | 26 | fveq2i 6412 | . . . 4 ⊢ ((,)‘(𝐹‘(0(,)0))) = ((,)‘〈0, 0〉) |
28 | df-ov 6879 | . . . 4 ⊢ (0(,)0) = ((,)‘〈0, 0〉) | |
29 | 27, 28 | eqtr4i 2822 | . . 3 ⊢ ((,)‘(𝐹‘(0(,)0))) = (0(,)0) |
30 | 24 | eqeq2i 2809 | . . . . . 6 ⊢ (𝐴 = (0(,)0) ↔ 𝐴 = ∅) |
31 | 30 | biimpri 220 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 = (0(,)0)) |
32 | 31 | fveq2d 6413 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = (𝐹‘(0(,)0))) |
33 | 32 | fveq2d 6413 | . . 3 ⊢ (𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = ((,)‘(𝐹‘(0(,)0)))) |
34 | 29, 33, 31 | 3eqtr4a 2857 | . 2 ⊢ (𝐴 = ∅ → ((,)‘(𝐹‘𝐴)) = 𝐴) |
35 | 20, 34 | pm2.61d2 174 | 1 ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 ∃wrex 3088 ∅c0 4113 ifcif 4275 𝒫 cpw 4347 〈cop 4372 ↦ cmpt 4920 × cxp 5308 ran crn 5311 Fn wfn 6094 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 supcsup 8586 infcinf 8587 ℝcr 10221 0cc0 10222 ℝ*cxr 10360 < clt 10361 (,)cioo 12420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-sup 8588 df-inf 8589 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-n0 11577 df-z 11663 df-uz 11927 df-q 12030 df-ioo 12424 |
This theorem is referenced by: uniioombllem2 23688 |
Copyright terms: Public domain | W3C validator |