MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorinv Structured version   Visualization version   GIF version

Theorem ioorinv 24645
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorinv (𝐴 ∈ ran (,) → ((,)‘(𝐹𝐴)) = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ioorinv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 13108 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6584 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 7426 . . . 4 ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)))
41, 2, 3mp2b 10 . . 3 (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))
5 ioorf.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
65ioorinv2 24644 . . . . . . . 8 ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = ⟨𝑎, 𝑏⟩)
76fveq2d 6760 . . . . . . 7 ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = ((,)‘⟨𝑎, 𝑏⟩))
8 df-ov 7258 . . . . . . 7 (𝑎(,)𝑏) = ((,)‘⟨𝑎, 𝑏⟩)
97, 8eqtr4di 2797 . . . . . 6 ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))
10 df-ne 2943 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
11 neeq1 3005 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
1210, 11bitr3id 284 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
13 2fveq3 6761 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → ((,)‘(𝐹𝐴)) = ((,)‘(𝐹‘(𝑎(,)𝑏))))
14 id 22 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → 𝐴 = (𝑎(,)𝑏))
1513, 14eqeq12d 2754 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (((,)‘(𝐹𝐴)) = 𝐴 ↔ ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)))
1612, 15imbi12d 344 . . . . . 6 (𝐴 = (𝑎(,)𝑏) → ((¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴) ↔ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))))
179, 16mpbiri 257 . . . . 5 (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
1817a1i 11 . . . 4 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴)))
1918rexlimivv 3220 . . 3 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
204, 19sylbi 216 . 2 (𝐴 ∈ ran (,) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
21 ioorebas 13112 . . . . . . 7 (0(,)0) ∈ ran (,)
225ioorval 24643 . . . . . . 7 ((0(,)0) ∈ ran (,) → (𝐹‘(0(,)0)) = if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩))
2321, 22ax-mp 5 . . . . . 6 (𝐹‘(0(,)0)) = if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩)
24 iooid 13036 . . . . . . 7 (0(,)0) = ∅
2524iftruei 4463 . . . . . 6 if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩) = ⟨0, 0⟩
2623, 25eqtri 2766 . . . . 5 (𝐹‘(0(,)0)) = ⟨0, 0⟩
2726fveq2i 6759 . . . 4 ((,)‘(𝐹‘(0(,)0))) = ((,)‘⟨0, 0⟩)
28 df-ov 7258 . . . 4 (0(,)0) = ((,)‘⟨0, 0⟩)
2927, 28eqtr4i 2769 . . 3 ((,)‘(𝐹‘(0(,)0))) = (0(,)0)
3024eqeq2i 2751 . . . . . 6 (𝐴 = (0(,)0) ↔ 𝐴 = ∅)
3130biimpri 227 . . . . 5 (𝐴 = ∅ → 𝐴 = (0(,)0))
3231fveq2d 6760 . . . 4 (𝐴 = ∅ → (𝐹𝐴) = (𝐹‘(0(,)0)))
3332fveq2d 6760 . . 3 (𝐴 = ∅ → ((,)‘(𝐹𝐴)) = ((,)‘(𝐹‘(0(,)0))))
3429, 33, 313eqtr4a 2805 . 2 (𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴)
3520, 34pm2.61d2 181 1 (𝐴 ∈ ran (,) → ((,)‘(𝐹𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  c0 4253  ifcif 4456  𝒫 cpw 4530  cop 4564  cmpt 5153   × cxp 5578  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  infcinf 9130  cr 10801  0cc0 10802  *cxr 10939   < clt 10940  (,)cioo 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-ioo 13012
This theorem is referenced by:  uniioombllem2  24652
  Copyright terms: Public domain W3C validator