Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioorcl | Structured version Visualization version GIF version |
Description: The function 𝐹 does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorcl | ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioorf.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
2 | 1 | ioorf 24287 | . . . . 5 ⊢ 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)) |
3 | 2 | ffvelrni 6847 | . . . 4 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*))) |
4 | 3 | adantr 484 | . . 3 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*))) |
5 | 4 | elin1d 4105 | . 2 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ≤ ) |
6 | 1 | ioorval 24288 | . . . . . 6 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
7 | 6 | adantr 484 | . . . . 5 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
8 | iftrue 4429 | . . . . 5 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) = 〈0, 0〉) | |
9 | 7, 8 | sylan9eq 2813 | . . . 4 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹‘𝐴) = 〈0, 0〉) |
10 | 0re 10694 | . . . . 5 ⊢ 0 ∈ ℝ | |
11 | opelxpi 5565 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ) → 〈0, 0〉 ∈ (ℝ × ℝ)) | |
12 | 10, 10, 11 | mp2an 691 | . . . 4 ⊢ 〈0, 0〉 ∈ (ℝ × ℝ) |
13 | 9, 12 | eqeltrdi 2860 | . . 3 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
14 | ioof 12892 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
15 | ffn 6503 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
16 | ovelrn 7326 | . . . . . 6 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))) | |
17 | 14, 15, 16 | mp2b 10 | . . . . 5 ⊢ (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)) |
18 | 1 | ioorinv2 24289 | . . . . . . . . . 10 ⊢ ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
19 | 18 | adantl 485 | . . . . . . . . 9 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
20 | ioorcl2 24286 | . . . . . . . . . . 11 ⊢ (((𝑎(,)𝑏) ≠ ∅ ∧ (vol*‘(𝑎(,)𝑏)) ∈ ℝ) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) | |
21 | 20 | ancoms 462 | . . . . . . . . . 10 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) |
22 | opelxpi 5565 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → 〈𝑎, 𝑏〉 ∈ (ℝ × ℝ)) | |
23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → 〈𝑎, 𝑏〉 ∈ (ℝ × ℝ)) |
24 | 19, 23 | eqeltrd 2852 | . . . . . . . 8 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)) |
25 | fveq2 6663 | . . . . . . . . . . 11 ⊢ (𝐴 = (𝑎(,)𝑏) → (vol*‘𝐴) = (vol*‘(𝑎(,)𝑏))) | |
26 | 25 | eleq1d 2836 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘(𝑎(,)𝑏)) ∈ ℝ)) |
27 | neeq1 3013 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) | |
28 | 26, 27 | anbi12d 633 | . . . . . . . . 9 ⊢ (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) ↔ ((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅))) |
29 | fveq2 6663 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐹‘𝐴) = (𝐹‘(𝑎(,)𝑏))) | |
30 | 29 | eleq1d 2836 | . . . . . . . . 9 ⊢ (𝐴 = (𝑎(,)𝑏) → ((𝐹‘𝐴) ∈ (ℝ × ℝ) ↔ (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ))) |
31 | 28, 30 | imbi12d 348 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → ((((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) ↔ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)))) |
32 | 24, 31 | mpbiri 261 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)))) |
34 | 33 | rexlimivv 3216 | . . . . 5 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
35 | 17, 34 | sylbi 220 | . . . 4 ⊢ (𝐴 ∈ ran (,) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
36 | 35 | impl 459 | . . 3 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
37 | 13, 36 | pm2.61dane 3038 | . 2 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
38 | 5, 37 | elind 4101 | 1 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 ∩ cin 3859 ∅c0 4227 ifcif 4423 𝒫 cpw 4497 〈cop 4531 ↦ cmpt 5116 × cxp 5526 ran crn 5529 Fn wfn 6335 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 supcsup 8950 infcinf 8951 ℝcr 10587 0cc0 10588 ℝ*cxr 10725 < clt 10726 ≤ cle 10727 (,)cioo 12792 vol*covol 24176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-er 8305 df-map 8424 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-dju 9376 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-z 12034 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-fl 13224 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-rlim 14907 df-sum 15104 df-rest 16768 df-topgen 16789 df-psmet 20172 df-xmet 20173 df-met 20174 df-bl 20175 df-mopn 20176 df-top 21608 df-topon 21625 df-bases 21660 df-cmp 22101 df-ovol 24178 df-vol 24179 |
This theorem is referenced by: uniioombllem2 24297 |
Copyright terms: Public domain | W3C validator |