MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorcl Structured version   Visualization version   GIF version

Theorem ioorcl 25086
Description: The function 𝐹 does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorcl ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) ∈ ( ≤ ∩ (ℝ × ℝ)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ioorcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . . . . . 6 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
21ioorf 25082 . . . . 5 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
32ffvelcdmi 7083 . . . 4 (𝐴 ∈ ran (,) → (𝐹𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
43adantr 482 . . 3 ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
54elin1d 4198 . 2 ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) ∈ ≤ )
61ioorval 25083 . . . . . 6 (𝐴 ∈ ran (,) → (𝐹𝐴) = if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩))
76adantr 482 . . . . 5 ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) = if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩))
8 iftrue 4534 . . . . 5 (𝐴 = ∅ → if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩) = ⟨0, 0⟩)
97, 8sylan9eq 2793 . . . 4 (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹𝐴) = ⟨0, 0⟩)
10 0re 11213 . . . . 5 0 ∈ ℝ
11 opelxpi 5713 . . . . 5 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
1210, 10, 11mp2an 691 . . . 4 ⟨0, 0⟩ ∈ (ℝ × ℝ)
139, 12eqeltrdi 2842 . . 3 (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹𝐴) ∈ (ℝ × ℝ))
14 ioof 13421 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
15 ffn 6715 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
16 ovelrn 7580 . . . . . 6 ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)))
1714, 15, 16mp2b 10 . . . . 5 (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))
181ioorinv2 25084 . . . . . . . . . 10 ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = ⟨𝑎, 𝑏⟩)
1918adantl 483 . . . . . . . . 9 (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) = ⟨𝑎, 𝑏⟩)
20 ioorcl2 25081 . . . . . . . . . . 11 (((𝑎(,)𝑏) ≠ ∅ ∧ (vol*‘(𝑎(,)𝑏)) ∈ ℝ) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
2120ancoms 460 . . . . . . . . . 10 (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
22 opelxpi 5713 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ⟨𝑎, 𝑏⟩ ∈ (ℝ × ℝ))
2321, 22syl 17 . . . . . . . . 9 (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → ⟨𝑎, 𝑏⟩ ∈ (ℝ × ℝ))
2419, 23eqeltrd 2834 . . . . . . . 8 (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ))
25 fveq2 6889 . . . . . . . . . . 11 (𝐴 = (𝑎(,)𝑏) → (vol*‘𝐴) = (vol*‘(𝑎(,)𝑏)))
2625eleq1d 2819 . . . . . . . . . 10 (𝐴 = (𝑎(,)𝑏) → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘(𝑎(,)𝑏)) ∈ ℝ))
27 neeq1 3004 . . . . . . . . . 10 (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
2826, 27anbi12d 632 . . . . . . . . 9 (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) ↔ ((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅)))
29 fveq2 6889 . . . . . . . . . 10 (𝐴 = (𝑎(,)𝑏) → (𝐹𝐴) = (𝐹‘(𝑎(,)𝑏)))
3029eleq1d 2819 . . . . . . . . 9 (𝐴 = (𝑎(,)𝑏) → ((𝐹𝐴) ∈ (ℝ × ℝ) ↔ (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)))
3128, 30imbi12d 345 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → ((((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ)) ↔ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ))))
3224, 31mpbiri 258 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ)))
3332a1i 11 . . . . . 6 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ))))
3433rexlimivv 3200 . . . . 5 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ)))
3517, 34sylbi 216 . . . 4 (𝐴 ∈ ran (,) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ)))
3635impl 457 . . 3 (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ))
3713, 36pm2.61dane 3030 . 2 ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) ∈ (ℝ × ℝ))
385, 37elind 4194 1 ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) ∈ ( ≤ ∩ (ℝ × ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wrex 3071  cin 3947  c0 4322  ifcif 4528  𝒫 cpw 4602  cop 4634  cmpt 5231   × cxp 5674  ran crn 5677   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7406  supcsup 9432  infcinf 9433  cr 11106  0cc0 11107  *cxr 11244   < clt 11245  cle 11246  (,)cioo 13321  vol*covol 24971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-rest 17365  df-topgen 17386  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-top 22388  df-topon 22405  df-bases 22441  df-cmp 22883  df-ovol 24973  df-vol 24974
This theorem is referenced by:  uniioombllem2  25092
  Copyright terms: Public domain W3C validator