![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorcl | Structured version Visualization version GIF version |
Description: The function 𝐹 does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorcl | ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioorf.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
2 | 1 | ioorf 24937 | . . . . 5 ⊢ 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)) |
3 | 2 | ffvelcdmi 7034 | . . . 4 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*))) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*))) |
5 | 4 | elin1d 4158 | . 2 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ≤ ) |
6 | 1 | ioorval 24938 | . . . . . 6 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
8 | iftrue 4492 | . . . . 5 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) = 〈0, 0〉) | |
9 | 7, 8 | sylan9eq 2796 | . . . 4 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹‘𝐴) = 〈0, 0〉) |
10 | 0re 11157 | . . . . 5 ⊢ 0 ∈ ℝ | |
11 | opelxpi 5670 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ) → 〈0, 0〉 ∈ (ℝ × ℝ)) | |
12 | 10, 10, 11 | mp2an 690 | . . . 4 ⊢ 〈0, 0〉 ∈ (ℝ × ℝ) |
13 | 9, 12 | eqeltrdi 2846 | . . 3 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
14 | ioof 13364 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
15 | ffn 6668 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
16 | ovelrn 7530 | . . . . . 6 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))) | |
17 | 14, 15, 16 | mp2b 10 | . . . . 5 ⊢ (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)) |
18 | 1 | ioorinv2 24939 | . . . . . . . . . 10 ⊢ ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
19 | 18 | adantl 482 | . . . . . . . . 9 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
20 | ioorcl2 24936 | . . . . . . . . . . 11 ⊢ (((𝑎(,)𝑏) ≠ ∅ ∧ (vol*‘(𝑎(,)𝑏)) ∈ ℝ) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) | |
21 | 20 | ancoms 459 | . . . . . . . . . 10 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) |
22 | opelxpi 5670 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → 〈𝑎, 𝑏〉 ∈ (ℝ × ℝ)) | |
23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → 〈𝑎, 𝑏〉 ∈ (ℝ × ℝ)) |
24 | 19, 23 | eqeltrd 2838 | . . . . . . . 8 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)) |
25 | fveq2 6842 | . . . . . . . . . . 11 ⊢ (𝐴 = (𝑎(,)𝑏) → (vol*‘𝐴) = (vol*‘(𝑎(,)𝑏))) | |
26 | 25 | eleq1d 2822 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘(𝑎(,)𝑏)) ∈ ℝ)) |
27 | neeq1 3006 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) | |
28 | 26, 27 | anbi12d 631 | . . . . . . . . 9 ⊢ (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) ↔ ((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅))) |
29 | fveq2 6842 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐹‘𝐴) = (𝐹‘(𝑎(,)𝑏))) | |
30 | 29 | eleq1d 2822 | . . . . . . . . 9 ⊢ (𝐴 = (𝑎(,)𝑏) → ((𝐹‘𝐴) ∈ (ℝ × ℝ) ↔ (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ))) |
31 | 28, 30 | imbi12d 344 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → ((((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) ↔ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)))) |
32 | 24, 31 | mpbiri 257 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)))) |
34 | 33 | rexlimivv 3196 | . . . . 5 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
35 | 17, 34 | sylbi 216 | . . . 4 ⊢ (𝐴 ∈ ran (,) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
36 | 35 | impl 456 | . . 3 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
37 | 13, 36 | pm2.61dane 3032 | . 2 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
38 | 5, 37 | elind 4154 | 1 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3073 ∩ cin 3909 ∅c0 4282 ifcif 4486 𝒫 cpw 4560 〈cop 4592 ↦ cmpt 5188 × cxp 5631 ran crn 5634 Fn wfn 6491 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 supcsup 9376 infcinf 9377 ℝcr 11050 0cc0 11051 ℝ*cxr 11188 < clt 11189 ≤ cle 11190 (,)cioo 13264 vol*covol 24826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-dju 9837 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-rlim 15371 df-sum 15571 df-rest 17304 df-topgen 17325 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-top 22243 df-topon 22260 df-bases 22296 df-cmp 22738 df-ovol 24828 df-vol 24829 |
This theorem is referenced by: uniioombllem2 24947 |
Copyright terms: Public domain | W3C validator |