![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorcl | Structured version Visualization version GIF version |
Description: The function 𝐹 does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorcl | ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioorf.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
2 | 1 | ioorf 25082 | . . . . 5 ⊢ 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)) |
3 | 2 | ffvelcdmi 7083 | . . . 4 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*))) |
4 | 3 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*))) |
5 | 4 | elin1d 4198 | . 2 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ≤ ) |
6 | 1 | ioorval 25083 | . . . . . 6 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
7 | 6 | adantr 482 | . . . . 5 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
8 | iftrue 4534 | . . . . 5 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) = 〈0, 0〉) | |
9 | 7, 8 | sylan9eq 2793 | . . . 4 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹‘𝐴) = 〈0, 0〉) |
10 | 0re 11213 | . . . . 5 ⊢ 0 ∈ ℝ | |
11 | opelxpi 5713 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ) → 〈0, 0〉 ∈ (ℝ × ℝ)) | |
12 | 10, 10, 11 | mp2an 691 | . . . 4 ⊢ 〈0, 0〉 ∈ (ℝ × ℝ) |
13 | 9, 12 | eqeltrdi 2842 | . . 3 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
14 | ioof 13421 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
15 | ffn 6715 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
16 | ovelrn 7580 | . . . . . 6 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))) | |
17 | 14, 15, 16 | mp2b 10 | . . . . 5 ⊢ (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)) |
18 | 1 | ioorinv2 25084 | . . . . . . . . . 10 ⊢ ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
19 | 18 | adantl 483 | . . . . . . . . 9 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
20 | ioorcl2 25081 | . . . . . . . . . . 11 ⊢ (((𝑎(,)𝑏) ≠ ∅ ∧ (vol*‘(𝑎(,)𝑏)) ∈ ℝ) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) | |
21 | 20 | ancoms 460 | . . . . . . . . . 10 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) |
22 | opelxpi 5713 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → 〈𝑎, 𝑏〉 ∈ (ℝ × ℝ)) | |
23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → 〈𝑎, 𝑏〉 ∈ (ℝ × ℝ)) |
24 | 19, 23 | eqeltrd 2834 | . . . . . . . 8 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)) |
25 | fveq2 6889 | . . . . . . . . . . 11 ⊢ (𝐴 = (𝑎(,)𝑏) → (vol*‘𝐴) = (vol*‘(𝑎(,)𝑏))) | |
26 | 25 | eleq1d 2819 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘(𝑎(,)𝑏)) ∈ ℝ)) |
27 | neeq1 3004 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) | |
28 | 26, 27 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) ↔ ((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅))) |
29 | fveq2 6889 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐹‘𝐴) = (𝐹‘(𝑎(,)𝑏))) | |
30 | 29 | eleq1d 2819 | . . . . . . . . 9 ⊢ (𝐴 = (𝑎(,)𝑏) → ((𝐹‘𝐴) ∈ (ℝ × ℝ) ↔ (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ))) |
31 | 28, 30 | imbi12d 345 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → ((((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) ↔ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)))) |
32 | 24, 31 | mpbiri 258 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)))) |
34 | 33 | rexlimivv 3200 | . . . . 5 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
35 | 17, 34 | sylbi 216 | . . . 4 ⊢ (𝐴 ∈ ran (,) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
36 | 35 | impl 457 | . . 3 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
37 | 13, 36 | pm2.61dane 3030 | . 2 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
38 | 5, 37 | elind 4194 | 1 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3071 ∩ cin 3947 ∅c0 4322 ifcif 4528 𝒫 cpw 4602 〈cop 4634 ↦ cmpt 5231 × cxp 5674 ran crn 5677 Fn wfn 6536 ⟶wf 6537 ‘cfv 6541 (class class class)co 7406 supcsup 9432 infcinf 9433 ℝcr 11106 0cc0 11107 ℝ*cxr 11244 < clt 11245 ≤ cle 11246 (,)cioo 13321 vol*covol 24971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-of 7667 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-2o 8464 df-er 8700 df-map 8819 df-pm 8820 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fi 9403 df-sup 9434 df-inf 9435 df-oi 9502 df-dju 9893 df-card 9931 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-ioo 13325 df-ico 13327 df-icc 13328 df-fz 13482 df-fzo 13625 df-fl 13754 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-rlim 15430 df-sum 15630 df-rest 17365 df-topgen 17386 df-psmet 20929 df-xmet 20930 df-met 20931 df-bl 20932 df-mopn 20933 df-top 22388 df-topon 22405 df-bases 22441 df-cmp 22883 df-ovol 24973 df-vol 24974 |
This theorem is referenced by: uniioombllem2 25092 |
Copyright terms: Public domain | W3C validator |