MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorcl Structured version   Visualization version   GIF version

Theorem ioorcl 24941
Description: The function 𝐹 does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorcl ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) ∈ ( ≤ ∩ (ℝ × ℝ)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ioorcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . . . . . 6 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
21ioorf 24937 . . . . 5 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
32ffvelcdmi 7034 . . . 4 (𝐴 ∈ ran (,) → (𝐹𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
43adantr 481 . . 3 ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
54elin1d 4158 . 2 ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) ∈ ≤ )
61ioorval 24938 . . . . . 6 (𝐴 ∈ ran (,) → (𝐹𝐴) = if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩))
76adantr 481 . . . . 5 ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) = if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩))
8 iftrue 4492 . . . . 5 (𝐴 = ∅ → if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩) = ⟨0, 0⟩)
97, 8sylan9eq 2796 . . . 4 (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹𝐴) = ⟨0, 0⟩)
10 0re 11157 . . . . 5 0 ∈ ℝ
11 opelxpi 5670 . . . . 5 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
1210, 10, 11mp2an 690 . . . 4 ⟨0, 0⟩ ∈ (ℝ × ℝ)
139, 12eqeltrdi 2846 . . 3 (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹𝐴) ∈ (ℝ × ℝ))
14 ioof 13364 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
15 ffn 6668 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
16 ovelrn 7530 . . . . . 6 ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)))
1714, 15, 16mp2b 10 . . . . 5 (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))
181ioorinv2 24939 . . . . . . . . . 10 ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = ⟨𝑎, 𝑏⟩)
1918adantl 482 . . . . . . . . 9 (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) = ⟨𝑎, 𝑏⟩)
20 ioorcl2 24936 . . . . . . . . . . 11 (((𝑎(,)𝑏) ≠ ∅ ∧ (vol*‘(𝑎(,)𝑏)) ∈ ℝ) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
2120ancoms 459 . . . . . . . . . 10 (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
22 opelxpi 5670 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ⟨𝑎, 𝑏⟩ ∈ (ℝ × ℝ))
2321, 22syl 17 . . . . . . . . 9 (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → ⟨𝑎, 𝑏⟩ ∈ (ℝ × ℝ))
2419, 23eqeltrd 2838 . . . . . . . 8 (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ))
25 fveq2 6842 . . . . . . . . . . 11 (𝐴 = (𝑎(,)𝑏) → (vol*‘𝐴) = (vol*‘(𝑎(,)𝑏)))
2625eleq1d 2822 . . . . . . . . . 10 (𝐴 = (𝑎(,)𝑏) → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘(𝑎(,)𝑏)) ∈ ℝ))
27 neeq1 3006 . . . . . . . . . 10 (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
2826, 27anbi12d 631 . . . . . . . . 9 (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) ↔ ((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅)))
29 fveq2 6842 . . . . . . . . . 10 (𝐴 = (𝑎(,)𝑏) → (𝐹𝐴) = (𝐹‘(𝑎(,)𝑏)))
3029eleq1d 2822 . . . . . . . . 9 (𝐴 = (𝑎(,)𝑏) → ((𝐹𝐴) ∈ (ℝ × ℝ) ↔ (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)))
3128, 30imbi12d 344 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → ((((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ)) ↔ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ))))
3224, 31mpbiri 257 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ)))
3332a1i 11 . . . . . 6 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ))))
3433rexlimivv 3196 . . . . 5 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ)))
3517, 34sylbi 216 . . . 4 (𝐴 ∈ ran (,) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ)))
3635impl 456 . . 3 (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ∈ (ℝ × ℝ))
3713, 36pm2.61dane 3032 . 2 ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) ∈ (ℝ × ℝ))
385, 37elind 4154 1 ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹𝐴) ∈ ( ≤ ∩ (ℝ × ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cin 3909  c0 4282  ifcif 4486  𝒫 cpw 4560  cop 4592  cmpt 5188   × cxp 5631  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  infcinf 9377  cr 11050  0cc0 11051  *cxr 11188   < clt 11189  cle 11190  (,)cioo 13264  vol*covol 24826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829
This theorem is referenced by:  uniioombllem2  24947
  Copyright terms: Public domain W3C validator