![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorcl | Structured version Visualization version GIF version |
Description: The function 𝐹 does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorcl | ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioorf.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
2 | 1 | ioorf 25622 | . . . . 5 ⊢ 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)) |
3 | 2 | ffvelcdmi 7103 | . . . 4 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*))) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*))) |
5 | 4 | elin1d 4214 | . 2 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ≤ ) |
6 | 1 | ioorval 25623 | . . . . . 6 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
8 | iftrue 4537 | . . . . 5 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) = 〈0, 0〉) | |
9 | 7, 8 | sylan9eq 2795 | . . . 4 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹‘𝐴) = 〈0, 0〉) |
10 | 0re 11261 | . . . . 5 ⊢ 0 ∈ ℝ | |
11 | opelxpi 5726 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ) → 〈0, 0〉 ∈ (ℝ × ℝ)) | |
12 | 10, 10, 11 | mp2an 692 | . . . 4 ⊢ 〈0, 0〉 ∈ (ℝ × ℝ) |
13 | 9, 12 | eqeltrdi 2847 | . . 3 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
14 | ioof 13484 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
15 | ffn 6737 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
16 | ovelrn 7609 | . . . . . 6 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))) | |
17 | 14, 15, 16 | mp2b 10 | . . . . 5 ⊢ (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)) |
18 | 1 | ioorinv2 25624 | . . . . . . . . . 10 ⊢ ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
19 | 18 | adantl 481 | . . . . . . . . 9 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
20 | ioorcl2 25621 | . . . . . . . . . . 11 ⊢ (((𝑎(,)𝑏) ≠ ∅ ∧ (vol*‘(𝑎(,)𝑏)) ∈ ℝ) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) | |
21 | 20 | ancoms 458 | . . . . . . . . . 10 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) |
22 | opelxpi 5726 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → 〈𝑎, 𝑏〉 ∈ (ℝ × ℝ)) | |
23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → 〈𝑎, 𝑏〉 ∈ (ℝ × ℝ)) |
24 | 19, 23 | eqeltrd 2839 | . . . . . . . 8 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)) |
25 | fveq2 6907 | . . . . . . . . . . 11 ⊢ (𝐴 = (𝑎(,)𝑏) → (vol*‘𝐴) = (vol*‘(𝑎(,)𝑏))) | |
26 | 25 | eleq1d 2824 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘(𝑎(,)𝑏)) ∈ ℝ)) |
27 | neeq1 3001 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) | |
28 | 26, 27 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) ↔ ((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅))) |
29 | fveq2 6907 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐹‘𝐴) = (𝐹‘(𝑎(,)𝑏))) | |
30 | 29 | eleq1d 2824 | . . . . . . . . 9 ⊢ (𝐴 = (𝑎(,)𝑏) → ((𝐹‘𝐴) ∈ (ℝ × ℝ) ↔ (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ))) |
31 | 28, 30 | imbi12d 344 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → ((((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) ↔ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)))) |
32 | 24, 31 | mpbiri 258 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)))) |
34 | 33 | rexlimivv 3199 | . . . . 5 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
35 | 17, 34 | sylbi 217 | . . . 4 ⊢ (𝐴 ∈ ran (,) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
36 | 35 | impl 455 | . . 3 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
37 | 13, 36 | pm2.61dane 3027 | . 2 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
38 | 5, 37 | elind 4210 | 1 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 ∩ cin 3962 ∅c0 4339 ifcif 4531 𝒫 cpw 4605 〈cop 4637 ↦ cmpt 5231 × cxp 5687 ran crn 5690 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 supcsup 9478 infcinf 9479 ℝcr 11152 0cc0 11153 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 (,)cioo 13384 vol*covol 25511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-rest 17469 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-bases 22969 df-cmp 23411 df-ovol 25513 df-vol 25514 |
This theorem is referenced by: uniioombllem2 25632 |
Copyright terms: Public domain | W3C validator |