| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioorcl | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| Ref | Expression |
|---|---|
| ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
| Ref | Expression |
|---|---|
| ioorcl | ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorf.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
| 2 | 1 | ioorf 25502 | . . . . 5 ⊢ 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)) |
| 3 | 2 | ffvelcdmi 7022 | . . . 4 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*))) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ* × ℝ*))) |
| 5 | 4 | elin1d 4153 | . 2 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ≤ ) |
| 6 | 1 | ioorval 25503 | . . . . . 6 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
| 8 | iftrue 4480 | . . . . 5 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) = 〈0, 0〉) | |
| 9 | 7, 8 | sylan9eq 2788 | . . . 4 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹‘𝐴) = 〈0, 0〉) |
| 10 | 0re 11121 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 11 | opelxpi 5656 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ) → 〈0, 0〉 ∈ (ℝ × ℝ)) | |
| 12 | 10, 10, 11 | mp2an 692 | . . . 4 ⊢ 〈0, 0〉 ∈ (ℝ × ℝ) |
| 13 | 9, 12 | eqeltrdi 2841 | . . 3 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 = ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
| 14 | ioof 13349 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 15 | ffn 6656 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 16 | ovelrn 7528 | . . . . . 6 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))) | |
| 17 | 14, 15, 16 | mp2b 10 | . . . . 5 ⊢ (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)) |
| 18 | 1 | ioorinv2 25504 | . . . . . . . . . 10 ⊢ ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
| 19 | 18 | adantl 481 | . . . . . . . . 9 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) = 〈𝑎, 𝑏〉) |
| 20 | ioorcl2 25501 | . . . . . . . . . . 11 ⊢ (((𝑎(,)𝑏) ≠ ∅ ∧ (vol*‘(𝑎(,)𝑏)) ∈ ℝ) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) | |
| 21 | 20 | ancoms 458 | . . . . . . . . . 10 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) |
| 22 | opelxpi 5656 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → 〈𝑎, 𝑏〉 ∈ (ℝ × ℝ)) | |
| 23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → 〈𝑎, 𝑏〉 ∈ (ℝ × ℝ)) |
| 24 | 19, 23 | eqeltrd 2833 | . . . . . . . 8 ⊢ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)) |
| 25 | fveq2 6828 | . . . . . . . . . . 11 ⊢ (𝐴 = (𝑎(,)𝑏) → (vol*‘𝐴) = (vol*‘(𝑎(,)𝑏))) | |
| 26 | 25 | eleq1d 2818 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘(𝑎(,)𝑏)) ∈ ℝ)) |
| 27 | neeq1 2991 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅)) | |
| 28 | 26, 27 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) ↔ ((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅))) |
| 29 | fveq2 6828 | . . . . . . . . . 10 ⊢ (𝐴 = (𝑎(,)𝑏) → (𝐹‘𝐴) = (𝐹‘(𝑎(,)𝑏))) | |
| 30 | 29 | eleq1d 2818 | . . . . . . . . 9 ⊢ (𝐴 = (𝑎(,)𝑏) → ((𝐹‘𝐴) ∈ (ℝ × ℝ) ↔ (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ))) |
| 31 | 28, 30 | imbi12d 344 | . . . . . . . 8 ⊢ (𝐴 = (𝑎(,)𝑏) → ((((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) ↔ (((vol*‘(𝑎(,)𝑏)) ∈ ℝ ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐹‘(𝑎(,)𝑏)) ∈ (ℝ × ℝ)))) |
| 32 | 24, 31 | mpbiri 258 | . . . . . . 7 ⊢ (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)))) |
| 34 | 33 | rexlimivv 3175 | . . . . 5 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
| 35 | 17, 34 | sylbi 217 | . . . 4 ⊢ (𝐴 ∈ ran (,) → (((vol*‘𝐴) ∈ ℝ ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ))) |
| 36 | 35 | impl 455 | . . 3 ⊢ (((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
| 37 | 13, 36 | pm2.61dane 3016 | . 2 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ (ℝ × ℝ)) |
| 38 | 5, 37 | elind 4149 | 1 ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 ∩ cin 3897 ∅c0 4282 ifcif 4474 𝒫 cpw 4549 〈cop 4581 ↦ cmpt 5174 × cxp 5617 ran crn 5620 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 supcsup 9331 infcinf 9332 ℝcr 11012 0cc0 11013 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 (,)cioo 13247 vol*covol 25391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-rlim 15398 df-sum 15596 df-rest 17328 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-top 22810 df-topon 22827 df-bases 22862 df-cmp 23303 df-ovol 25393 df-vol 25394 |
| This theorem is referenced by: uniioombllem2 25512 |
| Copyright terms: Public domain | W3C validator |