Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsper Structured version   Visualization version   GIF version

Theorem prjsper 42611
Description: The relation used to define ℙ𝕣𝕠𝕛 is an equivalence relation. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjsper (𝑉 ∈ LVec → Er 𝐵)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑙,𝑦,𝐾   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjsper
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjsprel.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21relopabiv 5837 . . 3 Rel
32a1i 11 . 2 (𝑉 ∈ LVec → Rel )
4 prjspertr.b . . 3 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
5 prjspertr.s . . 3 𝑆 = (Scalar‘𝑉)
6 prjspertr.x . . 3 · = ( ·𝑠𝑉)
7 prjspertr.k . . 3 𝐾 = (Base‘𝑆)
81, 4, 5, 6, 7prjspersym 42610 . 2 ((𝑉 ∈ LVec ∧ 𝑎 𝑏) → 𝑏 𝑎)
9 lveclmod 21132 . . 3 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
101, 4, 5, 6, 7prjspertr 42608 . . 3 ((𝑉 ∈ LMod ∧ (𝑎 𝑏𝑏 𝑐)) → 𝑎 𝑐)
119, 10sylan 580 . 2 ((𝑉 ∈ LVec ∧ (𝑎 𝑏𝑏 𝑐)) → 𝑎 𝑐)
121, 4, 5, 6, 7prjsperref 42609 . . 3 (𝑉 ∈ LMod → (𝑎𝐵𝑎 𝑎))
139, 12syl 17 . 2 (𝑉 ∈ LVec → (𝑎𝐵𝑎 𝑎))
143, 8, 11, 13iserd 8779 1 (𝑉 ∈ LVec → Er 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wrex 3070  cdif 3963  {csn 4634   class class class wbr 5151  {copab 5213  Rel wrel 5698  cfv 6569  (class class class)co 7438   Er wer 8750  Basecbs 17254  Scalarcsca 17310   ·𝑠 cvsca 17311  0gc0g 17495  LModclmod 20884  LVecclvec 21128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-tpos 8259  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-0g 17497  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20757  df-lmod 20886  df-lvec 21129
This theorem is referenced by:  prjspeclsp  42615  prjspner  42622  0prjspn  42631
  Copyright terms: Public domain W3C validator