![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsper | Structured version Visualization version GIF version |
Description: The relation used to define βπ£π π is an equivalence relation. (Contributed by Steven Nguyen, 1-May-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β πΎ π₯ = (π Β· π¦))} |
prjspertr.b | β’ π΅ = ((Baseβπ) β {(0gβπ)}) |
prjspertr.s | β’ π = (Scalarβπ) |
prjspertr.x | β’ Β· = ( Β·π βπ) |
prjspertr.k | β’ πΎ = (Baseβπ) |
Ref | Expression |
---|---|
prjsper | β’ (π β LVec β βΌ Er π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjsprel.1 | . . . 4 β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β πΎ π₯ = (π Β· π¦))} | |
2 | 1 | relopabiv 5820 | . . 3 β’ Rel βΌ |
3 | 2 | a1i 11 | . 2 β’ (π β LVec β Rel βΌ ) |
4 | prjspertr.b | . . 3 β’ π΅ = ((Baseβπ) β {(0gβπ)}) | |
5 | prjspertr.s | . . 3 β’ π = (Scalarβπ) | |
6 | prjspertr.x | . . 3 β’ Β· = ( Β·π βπ) | |
7 | prjspertr.k | . . 3 β’ πΎ = (Baseβπ) | |
8 | 1, 4, 5, 6, 7 | prjspersym 41815 | . 2 β’ ((π β LVec β§ π βΌ π) β π βΌ π) |
9 | lveclmod 20950 | . . 3 β’ (π β LVec β π β LMod) | |
10 | 1, 4, 5, 6, 7 | prjspertr 41813 | . . 3 β’ ((π β LMod β§ (π βΌ π β§ π βΌ π)) β π βΌ π) |
11 | 9, 10 | sylan 579 | . 2 β’ ((π β LVec β§ (π βΌ π β§ π βΌ π)) β π βΌ π) |
12 | 1, 4, 5, 6, 7 | prjsperref 41814 | . . 3 β’ (π β LMod β (π β π΅ β π βΌ π)) |
13 | 9, 12 | syl 17 | . 2 β’ (π β LVec β (π β π΅ β π βΌ π)) |
14 | 3, 8, 11, 13 | iserd 8735 | 1 β’ (π β LVec β βΌ Er π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwrex 3069 β cdif 3945 {csn 4628 class class class wbr 5148 {copab 5210 Rel wrel 5681 βcfv 6543 (class class class)co 7412 Er wer 8706 Basecbs 17151 Scalarcsca 17207 Β·π cvsca 17208 0gc0g 17392 LModclmod 20702 LVecclvec 20946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-drng 20585 df-lmod 20704 df-lvec 20947 |
This theorem is referenced by: prjspeclsp 41820 prjspner 41827 0prjspn 41836 |
Copyright terms: Public domain | W3C validator |