![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsper | Structured version Visualization version GIF version |
Description: The relation used to define ℙ𝕣𝕠𝕛 is an equivalence relation. (Contributed by Steven Nguyen, 1-May-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
prjsper | ⊢ (𝑉 ∈ LVec → ∼ Er 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjsprel.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
2 | 1 | relopabiv 5843 | . . 3 ⊢ Rel ∼ |
3 | 2 | a1i 11 | . 2 ⊢ (𝑉 ∈ LVec → Rel ∼ ) |
4 | prjspertr.b | . . 3 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
5 | prjspertr.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑉) | |
6 | prjspertr.x | . . 3 ⊢ · = ( ·𝑠 ‘𝑉) | |
7 | prjspertr.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
8 | 1, 4, 5, 6, 7 | prjspersym 42495 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑎 ∼ 𝑏) → 𝑏 ∼ 𝑎) |
9 | lveclmod 21123 | . . 3 ⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) | |
10 | 1, 4, 5, 6, 7 | prjspertr 42493 | . . 3 ⊢ ((𝑉 ∈ LMod ∧ (𝑎 ∼ 𝑏 ∧ 𝑏 ∼ 𝑐)) → 𝑎 ∼ 𝑐) |
11 | 9, 10 | sylan 579 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (𝑎 ∼ 𝑏 ∧ 𝑏 ∼ 𝑐)) → 𝑎 ∼ 𝑐) |
12 | 1, 4, 5, 6, 7 | prjsperref 42494 | . . 3 ⊢ (𝑉 ∈ LMod → (𝑎 ∈ 𝐵 ↔ 𝑎 ∼ 𝑎)) |
13 | 9, 12 | syl 17 | . 2 ⊢ (𝑉 ∈ LVec → (𝑎 ∈ 𝐵 ↔ 𝑎 ∼ 𝑎)) |
14 | 3, 8, 11, 13 | iserd 8785 | 1 ⊢ (𝑉 ∈ LVec → ∼ Er 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ∃wrex 3072 ∖ cdif 3967 {csn 4648 class class class wbr 5169 {copab 5231 Rel wrel 5704 ‘cfv 6572 (class class class)co 7445 Er wer 8756 Basecbs 17253 Scalarcsca 17309 ·𝑠 cvsca 17310 0gc0g 17494 LModclmod 20875 LVecclvec 21119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-2nd 8027 df-tpos 8263 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-3 12353 df-sets 17206 df-slot 17224 df-ndx 17236 df-base 17254 df-ress 17283 df-plusg 17319 df-mulr 17320 df-0g 17496 df-mgm 18673 df-sgrp 18752 df-mnd 18768 df-grp 18971 df-minusg 18972 df-cmn 19819 df-abl 19820 df-mgp 20157 df-rng 20175 df-ur 20204 df-ring 20257 df-oppr 20355 df-dvdsr 20378 df-unit 20379 df-invr 20409 df-drng 20748 df-lmod 20877 df-lvec 21120 |
This theorem is referenced by: prjspeclsp 42500 prjspner 42507 0prjspn 42516 |
Copyright terms: Public domain | W3C validator |