Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf34lem2 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-4 9855. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
isf34lem2 | ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝒫 𝐴⟶𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4039 | . . . 4 ⊢ (𝐴 ∖ 𝑥) ⊆ 𝐴 | |
2 | elpw2g 5218 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ 𝑥) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝑥) ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 261 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴) |
4 | 3 | adantr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝐴) → (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴) |
5 | compss.a | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
6 | 4, 5 | fmptd 6875 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝒫 𝐴⟶𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∖ cdif 3857 ⊆ wss 3860 𝒫 cpw 4497 ↦ cmpt 5116 ⟶wf 6336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 |
This theorem is referenced by: isf34lem5 9851 isf34lem7 9852 isf34lem6 9853 |
Copyright terms: Public domain | W3C validator |