MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3-4 Structured version   Visualization version   GIF version

Theorem isfin3-4 10021
Description: Weakly Dedekind-infinite sets are exactly those with an ω-indexed ascending chain of subsets. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin3-4 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓𝑥) ⊆ (𝑓‘suc 𝑥) → ran 𝑓 ∈ ran 𝑓)))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem isfin3-4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦))
21isf34lem6 10019 1 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓𝑥) ⊆ (𝑓‘suc 𝑥) → ran 𝑓 ∈ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2111  wral 3062  cdif 3878  wss 3881  𝒫 cpw 4528   cuni 4834  cmpt 5150  ran crn 5567  suc csuc 6233  cfv 6398  (class class class)co 7232  ωcom 7663  m cmap 8529  FinIIIcfin3 9920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-rpss 7530  df-om 7664  df-1st 7780  df-2nd 7781  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-seqom 8205  df-1o 8223  df-er 8412  df-map 8531  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-wdom 9206  df-card 9580  df-fin4 9926  df-fin3 9927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator