| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne2 | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐵 is finer than 𝐴". (Contributed by Jeff Hankins, 28-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
| isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
| Ref | Expression |
|---|---|
| isfne2 | ⊢ (𝐵 ∈ 𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfne.1 | . . 3 ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | isfne.2 | . . 3 ⊢ 𝑌 = ∪ 𝐵 | |
| 3 | 1, 2 | isfne4 36341 | . 2 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
| 4 | dfss3 3972 | . . . 4 ⊢ (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵)) | |
| 5 | eltg2b 22966 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) | |
| 6 | 5 | ralbidv 3178 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
| 7 | 4, 6 | bitrid 283 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
| 8 | 7 | anbi2d 630 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
| 9 | 3, 8 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 ∪ cuni 4907 class class class wbr 5143 ‘cfv 6561 topGenctg 17482 Fnecfne 36337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-topgen 17488 df-fne 36338 |
| This theorem is referenced by: fness 36350 fneref 36351 fnessref 36358 |
| Copyright terms: Public domain | W3C validator |