Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne2 Structured version   Visualization version   GIF version

Theorem isfne2 36326
Description: The predicate "𝐵 is finer than 𝐴". (Contributed by Jeff Hankins, 28-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne2 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧
Allowed substitution hints:   𝑋(𝑥,𝑦,𝑧)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem isfne2
StepHypRef Expression
1 isfne.1 . . 3 𝑋 = 𝐴
2 isfne.2 . . 3 𝑌 = 𝐵
31, 2isfne4 36324 . 2 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
4 dfss3 3924 . . . 4 (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 ∈ (topGen‘𝐵))
5 eltg2b 22844 . . . . 5 (𝐵𝐶 → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
65ralbidv 3152 . . . 4 (𝐵𝐶 → (∀𝑥𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
74, 6bitrid 283 . . 3 (𝐵𝐶 → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
87anbi2d 630 . 2 (𝐵𝐶 → ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
93, 8bitrid 283 1 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903   cuni 4858   class class class wbr 5092  cfv 6482  topGenctg 17341  Fnecfne 36320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-topgen 17347  df-fne 36321
This theorem is referenced by:  fness  36333  fneref  36334  fnessref  36341
  Copyright terms: Public domain W3C validator