| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version | ||
| Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | isfrgr 30240 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 {cpr 4575 ‘cfv 6481 Vtxcvtx 28974 Edgcedg 29025 USGraphcusgr 29127 FriendGraph cfrgr 30238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-frgr 30239 |
| This theorem is referenced by: frgreu 30248 frcond3 30249 nfrgr2v 30252 3vfriswmgr 30258 2pthfrgrrn2 30263 2pthfrgr 30264 3cyclfrgrrn2 30267 3cyclfrgr 30268 n4cyclfrgr 30271 frgrnbnb 30273 vdgn0frgrv2 30275 vdgn1frgrv2 30276 frgrncvvdeqlem2 30280 frgrncvvdeqlem3 30281 frgrncvvdeqlem6 30284 frgrncvvdeqlem9 30287 frgrncvvdeq 30289 frgrwopreglem4a 30290 frgrwopreg 30303 frgrregorufrg 30306 frgr2wwlkeu 30307 frgr2wsp1 30310 frgr2wwlkeqm 30311 frrusgrord0lem 30319 frrusgrord0 30320 friendshipgt3 30378 |
| Copyright terms: Public domain | W3C validator |