| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version | ||
| Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2730 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | isfrgr 30196 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 ∃!wreu 3354 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 {cpr 4594 ‘cfv 6514 Vtxcvtx 28930 Edgcedg 28981 USGraphcusgr 29083 FriendGraph cfrgr 30194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-frgr 30195 |
| This theorem is referenced by: frgreu 30204 frcond3 30205 nfrgr2v 30208 3vfriswmgr 30214 2pthfrgrrn2 30219 2pthfrgr 30220 3cyclfrgrrn2 30223 3cyclfrgr 30224 n4cyclfrgr 30227 frgrnbnb 30229 vdgn0frgrv2 30231 vdgn1frgrv2 30232 frgrncvvdeqlem2 30236 frgrncvvdeqlem3 30237 frgrncvvdeqlem6 30240 frgrncvvdeqlem9 30243 frgrncvvdeq 30245 frgrwopreglem4a 30246 frgrwopreg 30259 frgrregorufrg 30262 frgr2wwlkeu 30263 frgr2wsp1 30266 frgr2wwlkeqm 30267 frrusgrord0lem 30275 frrusgrord0 30276 friendshipgt3 30334 |
| Copyright terms: Public domain | W3C validator |