| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version | ||
| Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | isfrgr 30204 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3341 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 {cpr 4579 ‘cfv 6482 Vtxcvtx 28941 Edgcedg 28992 USGraphcusgr 29094 FriendGraph cfrgr 30202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-frgr 30203 |
| This theorem is referenced by: frgreu 30212 frcond3 30213 nfrgr2v 30216 3vfriswmgr 30222 2pthfrgrrn2 30227 2pthfrgr 30228 3cyclfrgrrn2 30231 3cyclfrgr 30232 n4cyclfrgr 30235 frgrnbnb 30237 vdgn0frgrv2 30239 vdgn1frgrv2 30240 frgrncvvdeqlem2 30244 frgrncvvdeqlem3 30245 frgrncvvdeqlem6 30248 frgrncvvdeqlem9 30251 frgrncvvdeq 30253 frgrwopreglem4a 30254 frgrwopreg 30267 frgrregorufrg 30270 frgr2wwlkeu 30271 frgr2wsp1 30274 frgr2wwlkeqm 30275 frrusgrord0lem 30283 frrusgrord0 30284 friendshipgt3 30342 |
| Copyright terms: Public domain | W3C validator |