MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrusgr Structured version   Visualization version   GIF version

Theorem frgrusgr 28526
Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Assertion
Ref Expression
frgrusgr (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)

Proof of Theorem frgrusgr
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2738 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2isfrgr 28525 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
43simplbi 497 1 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3063  ∃!wreu 3065  cdif 3880  wss 3883  {csn 4558  {cpr 4560  cfv 6418  Vtxcvtx 27269  Edgcedg 27320  USGraphcusgr 27422   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-frgr 28524
This theorem is referenced by:  frgreu  28533  frcond3  28534  nfrgr2v  28537  3vfriswmgr  28543  2pthfrgrrn2  28548  2pthfrgr  28549  3cyclfrgrrn2  28552  3cyclfrgr  28553  n4cyclfrgr  28556  frgrnbnb  28558  vdgn0frgrv2  28560  vdgn1frgrv2  28561  frgrncvvdeqlem2  28565  frgrncvvdeqlem3  28566  frgrncvvdeqlem6  28569  frgrncvvdeqlem9  28572  frgrncvvdeq  28574  frgrwopreglem4a  28575  frgrwopreg  28588  frgrregorufrg  28591  frgr2wwlkeu  28592  frgr2wsp1  28595  frgr2wwlkeqm  28596  frrusgrord0lem  28604  frrusgrord0  28605  friendshipgt3  28663
  Copyright terms: Public domain W3C validator