![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version |
Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | isfrgr 30292 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 ∃!wreu 3386 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 {cpr 4650 ‘cfv 6573 Vtxcvtx 29031 Edgcedg 29082 USGraphcusgr 29184 FriendGraph cfrgr 30290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-frgr 30291 |
This theorem is referenced by: frgreu 30300 frcond3 30301 nfrgr2v 30304 3vfriswmgr 30310 2pthfrgrrn2 30315 2pthfrgr 30316 3cyclfrgrrn2 30319 3cyclfrgr 30320 n4cyclfrgr 30323 frgrnbnb 30325 vdgn0frgrv2 30327 vdgn1frgrv2 30328 frgrncvvdeqlem2 30332 frgrncvvdeqlem3 30333 frgrncvvdeqlem6 30336 frgrncvvdeqlem9 30339 frgrncvvdeq 30341 frgrwopreglem4a 30342 frgrwopreg 30355 frgrregorufrg 30358 frgr2wwlkeu 30359 frgr2wsp1 30362 frgr2wwlkeqm 30363 frrusgrord0lem 30371 frrusgrord0 30372 friendshipgt3 30430 |
Copyright terms: Public domain | W3C validator |