Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version |
Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | isfrgr 28525 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 ∃!wreu 3065 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 {cpr 4560 ‘cfv 6418 Vtxcvtx 27269 Edgcedg 27320 USGraphcusgr 27422 FriendGraph cfrgr 28523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-frgr 28524 |
This theorem is referenced by: frgreu 28533 frcond3 28534 nfrgr2v 28537 3vfriswmgr 28543 2pthfrgrrn2 28548 2pthfrgr 28549 3cyclfrgrrn2 28552 3cyclfrgr 28553 n4cyclfrgr 28556 frgrnbnb 28558 vdgn0frgrv2 28560 vdgn1frgrv2 28561 frgrncvvdeqlem2 28565 frgrncvvdeqlem3 28566 frgrncvvdeqlem6 28569 frgrncvvdeqlem9 28572 frgrncvvdeq 28574 frgrwopreglem4a 28575 frgrwopreg 28588 frgrregorufrg 28591 frgr2wwlkeu 28592 frgr2wsp1 28595 frgr2wwlkeqm 28596 frrusgrord0lem 28604 frrusgrord0 28605 friendshipgt3 28663 |
Copyright terms: Public domain | W3C validator |