| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version | ||
| Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2735 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | isfrgr 30187 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3051 ∃!wreu 3357 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 {cpr 4603 ‘cfv 6530 Vtxcvtx 28921 Edgcedg 28972 USGraphcusgr 29074 FriendGraph cfrgr 30185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-frgr 30186 |
| This theorem is referenced by: frgreu 30195 frcond3 30196 nfrgr2v 30199 3vfriswmgr 30205 2pthfrgrrn2 30210 2pthfrgr 30211 3cyclfrgrrn2 30214 3cyclfrgr 30215 n4cyclfrgr 30218 frgrnbnb 30220 vdgn0frgrv2 30222 vdgn1frgrv2 30223 frgrncvvdeqlem2 30227 frgrncvvdeqlem3 30228 frgrncvvdeqlem6 30231 frgrncvvdeqlem9 30234 frgrncvvdeq 30236 frgrwopreglem4a 30237 frgrwopreg 30250 frgrregorufrg 30253 frgr2wwlkeu 30254 frgr2wsp1 30257 frgr2wwlkeqm 30258 frrusgrord0lem 30266 frrusgrord0 30267 friendshipgt3 30325 |
| Copyright terms: Public domain | W3C validator |