![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version |
Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2777 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2777 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | frgrusgrfrcond 27667 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
4 | 3 | simplbi 493 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3089 ∃!wreu 3091 ∖ cdif 3788 ⊆ wss 3791 {csn 4397 {cpr 4399 ‘cfv 6135 Vtxcvtx 26344 Edgcedg 26395 USGraphcusgr 26498 FriendGraph cfrgr 27664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-nul 5025 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 df-frgr 27665 |
This theorem is referenced by: frgreu 27676 frcond3 27677 nfrgr2v 27680 3vfriswmgr 27686 2pthfrgrrn2 27691 2pthfrgr 27692 3cyclfrgrrn2 27695 3cyclfrgr 27696 n4cyclfrgr 27699 frgrnbnb 27701 vdgn0frgrv2 27703 vdgn1frgrv2 27704 frgrncvvdeqlem2 27708 frgrncvvdeqlem3 27709 frgrncvvdeqlem6 27712 frgrncvvdeqlem9 27715 frgrncvvdeq 27717 frgrwopreglem4a 27718 frgrwopreg 27731 frgrregorufrg 27734 frgr2wwlkeu 27735 frgr2wsp1 27738 frgr2wwlkeqm 27739 frrusgrord0lem 27747 frrusgrord0 27748 friendshipgt3 27830 |
Copyright terms: Public domain | W3C validator |