![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version |
Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2732 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | isfrgr 29510 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
4 | 3 | simplbi 498 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3061 ∃!wreu 3374 ∖ cdif 3945 ⊆ wss 3948 {csn 4628 {cpr 4630 ‘cfv 6543 Vtxcvtx 28253 Edgcedg 28304 USGraphcusgr 28406 FriendGraph cfrgr 29508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-frgr 29509 |
This theorem is referenced by: frgreu 29518 frcond3 29519 nfrgr2v 29522 3vfriswmgr 29528 2pthfrgrrn2 29533 2pthfrgr 29534 3cyclfrgrrn2 29537 3cyclfrgr 29538 n4cyclfrgr 29541 frgrnbnb 29543 vdgn0frgrv2 29545 vdgn1frgrv2 29546 frgrncvvdeqlem2 29550 frgrncvvdeqlem3 29551 frgrncvvdeqlem6 29554 frgrncvvdeqlem9 29557 frgrncvvdeq 29559 frgrwopreglem4a 29560 frgrwopreg 29573 frgrregorufrg 29576 frgr2wwlkeu 29577 frgr2wsp1 29580 frgr2wwlkeqm 29581 frrusgrord0lem 29589 frrusgrord0 29590 friendshipgt3 29648 |
Copyright terms: Public domain | W3C validator |