| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version | ||
| Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | isfrgr 30162 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3349 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 {cpr 4587 ‘cfv 6499 Vtxcvtx 28899 Edgcedg 28950 USGraphcusgr 29052 FriendGraph cfrgr 30160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-frgr 30161 |
| This theorem is referenced by: frgreu 30170 frcond3 30171 nfrgr2v 30174 3vfriswmgr 30180 2pthfrgrrn2 30185 2pthfrgr 30186 3cyclfrgrrn2 30189 3cyclfrgr 30190 n4cyclfrgr 30193 frgrnbnb 30195 vdgn0frgrv2 30197 vdgn1frgrv2 30198 frgrncvvdeqlem2 30202 frgrncvvdeqlem3 30203 frgrncvvdeqlem6 30206 frgrncvvdeqlem9 30209 frgrncvvdeq 30211 frgrwopreglem4a 30212 frgrwopreg 30225 frgrregorufrg 30228 frgr2wwlkeu 30229 frgr2wsp1 30232 frgr2wwlkeqm 30233 frrusgrord0lem 30241 frrusgrord0 30242 friendshipgt3 30300 |
| Copyright terms: Public domain | W3C validator |