| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version | ||
| Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | isfrgr 30189 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3352 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 {cpr 4591 ‘cfv 6511 Vtxcvtx 28923 Edgcedg 28974 USGraphcusgr 29076 FriendGraph cfrgr 30187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-frgr 30188 |
| This theorem is referenced by: frgreu 30197 frcond3 30198 nfrgr2v 30201 3vfriswmgr 30207 2pthfrgrrn2 30212 2pthfrgr 30213 3cyclfrgrrn2 30216 3cyclfrgr 30217 n4cyclfrgr 30220 frgrnbnb 30222 vdgn0frgrv2 30224 vdgn1frgrv2 30225 frgrncvvdeqlem2 30229 frgrncvvdeqlem3 30230 frgrncvvdeqlem6 30233 frgrncvvdeqlem9 30236 frgrncvvdeq 30238 frgrwopreglem4a 30239 frgrwopreg 30252 frgrregorufrg 30255 frgr2wwlkeu 30256 frgr2wsp1 30259 frgr2wwlkeqm 30260 frrusgrord0lem 30268 frrusgrord0 30269 friendshipgt3 30327 |
| Copyright terms: Public domain | W3C validator |