![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version |
Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2734 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | isfrgr 30288 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∀wral 3058 ∃!wreu 3375 ∖ cdif 3959 ⊆ wss 3962 {csn 4630 {cpr 4632 ‘cfv 6562 Vtxcvtx 29027 Edgcedg 29078 USGraphcusgr 29180 FriendGraph cfrgr 30286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-nul 5311 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-frgr 30287 |
This theorem is referenced by: frgreu 30296 frcond3 30297 nfrgr2v 30300 3vfriswmgr 30306 2pthfrgrrn2 30311 2pthfrgr 30312 3cyclfrgrrn2 30315 3cyclfrgr 30316 n4cyclfrgr 30319 frgrnbnb 30321 vdgn0frgrv2 30323 vdgn1frgrv2 30324 frgrncvvdeqlem2 30328 frgrncvvdeqlem3 30329 frgrncvvdeqlem6 30332 frgrncvvdeqlem9 30335 frgrncvvdeq 30337 frgrwopreglem4a 30338 frgrwopreg 30351 frgrregorufrg 30354 frgr2wwlkeu 30355 frgr2wsp1 30358 frgr2wwlkeqm 30359 frrusgrord0lem 30367 frrusgrord0 30368 friendshipgt3 30426 |
Copyright terms: Public domain | W3C validator |