MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrusgr Structured version   Visualization version   GIF version

Theorem frgrusgr 27668
Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Assertion
Ref Expression
frgrusgr (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)

Proof of Theorem frgrusgr
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2777 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2777 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2frgrusgrfrcond 27667 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
43simplbi 493 1 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3089  ∃!wreu 3091  cdif 3788  wss 3791  {csn 4397  {cpr 4399  cfv 6135  Vtxcvtx 26344  Edgcedg 26395  USGraphcusgr 26498   FriendGraph cfrgr 27664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-nul 5025
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-iota 6099  df-fv 6143  df-frgr 27665
This theorem is referenced by:  frgreu  27676  frcond3  27677  nfrgr2v  27680  3vfriswmgr  27686  2pthfrgrrn2  27691  2pthfrgr  27692  3cyclfrgrrn2  27695  3cyclfrgr  27696  n4cyclfrgr  27699  frgrnbnb  27701  vdgn0frgrv2  27703  vdgn1frgrv2  27704  frgrncvvdeqlem2  27708  frgrncvvdeqlem3  27709  frgrncvvdeqlem6  27712  frgrncvvdeqlem9  27715  frgrncvvdeq  27717  frgrwopreglem4a  27718  frgrwopreg  27731  frgrregorufrg  27734  frgr2wwlkeu  27735  frgr2wsp1  27738  frgr2wwlkeqm  27739  frrusgrord0lem  27747  frrusgrord0  27748  friendshipgt3  27830
  Copyright terms: Public domain W3C validator