MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr0v Structured version   Visualization version   GIF version

Theorem frgr0v 28527
Description: Any null graph (set with no vertices) is a friendship graph iff its edge function is empty. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Assertion
Ref Expression
frgr0v ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ FriendGraph ↔ (iEdg‘𝐺) = ∅))

Proof of Theorem frgr0v
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2738 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2isfrgr 28525 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
4 usgruhgr 27456 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
54adantr 480 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → 𝐺 ∈ UHGraph)
6 uhgr0vb 27345 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
75, 6syl5ib 243 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → (iEdg‘𝐺) = ∅))
8 simpll 763 . . . . . 6 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → 𝐺𝑊)
9 simpr 484 . . . . . 6 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
108, 9usgr0e 27506 . . . . 5 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
11 ral0 4440 . . . . . . 7 𝑘 ∈ ∅ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)
12 raleq 3333 . . . . . . . 8 ((Vtx‘𝐺) = ∅ → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ ∅ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
1312adantl 481 . . . . . . 7 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ ∅ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
1411, 13mpbiri 257 . . . . . 6 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
1514adantr 480 . . . . 5 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
1610, 15jca 511 . . . 4 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
1716ex 412 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
187, 17impbid 211 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (iEdg‘𝐺) = ∅))
193, 18syl5bb 282 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ FriendGraph ↔ (iEdg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  ∃!wreu 3065  cdif 3880  wss 3883  c0 4253  {csn 4558  {cpr 4560  cfv 6418  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  UHGraphcuhgr 27329  USGraphcusgr 27422   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-i2m1 10870  ax-1ne0 10871  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-2 11966  df-uhgr 27331  df-upgr 27355  df-uspgr 27423  df-usgr 27424  df-frgr 28524
This theorem is referenced by:  frgr0vb  28528
  Copyright terms: Public domain W3C validator