MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr0v Structured version   Visualization version   GIF version

Theorem frgr0v 28345
Description: Any null graph (set with no vertices) is a friendship graph iff its edge function is empty. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Assertion
Ref Expression
frgr0v ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ FriendGraph ↔ (iEdg‘𝐺) = ∅))

Proof of Theorem frgr0v
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2737 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2isfrgr 28343 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
4 usgruhgr 27274 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
54adantr 484 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → 𝐺 ∈ UHGraph)
6 uhgr0vb 27163 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
75, 6syl5ib 247 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → (iEdg‘𝐺) = ∅))
8 simpll 767 . . . . . 6 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → 𝐺𝑊)
9 simpr 488 . . . . . 6 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
108, 9usgr0e 27324 . . . . 5 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
11 ral0 4424 . . . . . . 7 𝑘 ∈ ∅ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)
12 raleq 3319 . . . . . . . 8 ((Vtx‘𝐺) = ∅ → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ ∅ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
1312adantl 485 . . . . . . 7 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ ∅ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
1411, 13mpbiri 261 . . . . . 6 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
1514adantr 484 . . . . 5 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
1610, 15jca 515 . . . 4 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
1716ex 416 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
187, 17impbid 215 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (iEdg‘𝐺) = ∅))
193, 18syl5bb 286 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ FriendGraph ↔ (iEdg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  ∃!wreu 3063  cdif 3863  wss 3866  c0 4237  {csn 4541  {cpr 4543  cfv 6380  Vtxcvtx 27087  iEdgciedg 27088  Edgcedg 27138  UHGraphcuhgr 27147  USGraphcusgr 27240   FriendGraph cfrgr 28341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-i2m1 10797  ax-1ne0 10798  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-2 11893  df-uhgr 27149  df-upgr 27173  df-uspgr 27241  df-usgr 27242  df-frgr 28342
This theorem is referenced by:  frgr0vb  28346
  Copyright terms: Public domain W3C validator