![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgr0v | Structured version Visualization version GIF version |
Description: Any null graph (set with no vertices) is a friendship graph iff its edge function is empty. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
frgr0v | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ FriendGraph ↔ (iEdg‘𝐺) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2737 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | isfrgr 29207 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
4 | usgruhgr 28137 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
5 | 4 | adantr 482 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → 𝐺 ∈ UHGraph) |
6 | uhgr0vb 28026 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | |
7 | 5, 6 | imbitrid 243 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → (iEdg‘𝐺) = ∅)) |
8 | simpll 766 | . . . . . 6 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ 𝑊) | |
9 | simpr 486 | . . . . . 6 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅) | |
10 | 8, 9 | usgr0e 28187 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph) |
11 | ral0 4471 | . . . . . . 7 ⊢ ∀𝑘 ∈ ∅ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) | |
12 | raleq 3310 | . . . . . . . 8 ⊢ ((Vtx‘𝐺) = ∅ → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ ∅ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) | |
13 | 12 | adantl 483 | . . . . . . 7 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ ∅ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
14 | 11, 13 | mpbiri 258 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
15 | 14 | adantr 482 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
16 | 10, 15 | jca 513 | . . . 4 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ (iEdg‘𝐺) = ∅) → (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
17 | 16 | ex 414 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
18 | 7, 17 | impbid 211 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (iEdg‘𝐺) = ∅)) |
19 | 3, 18 | bitrid 283 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ FriendGraph ↔ (iEdg‘𝐺) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3065 ∃!wreu 3352 ∖ cdif 3908 ⊆ wss 3911 ∅c0 4283 {csn 4587 {cpr 4589 ‘cfv 6497 Vtxcvtx 27950 iEdgciedg 27951 Edgcedg 28001 UHGraphcuhgr 28010 USGraphcusgr 28103 FriendGraph cfrgr 29205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-i2m1 11120 ax-1ne0 11121 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-2 12217 df-uhgr 28012 df-upgr 28036 df-uspgr 28104 df-usgr 28105 df-frgr 29206 |
This theorem is referenced by: frgr0vb 29210 |
Copyright terms: Public domain | W3C validator |