MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr0 Structured version   Visualization version   GIF version

Theorem frgr0 30074
Description: The null graph (graph without vertices) is a friendship graph. (Contributed by AV, 29-Mar-2021.)
Assertion
Ref Expression
frgr0 ∅ ∈ FriendGraph

Proof of Theorem frgr0
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgr0 29055 . 2 ∅ ∈ USGraph
2 ral0 4513 . 2 𝑘 ∈ ∅ ∀𝑙 ∈ (∅ ∖ {𝑘})∃!𝑥 ∈ ∅ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘∅)
3 vtxval0 28851 . . . 4 (Vtx‘∅) = ∅
43eqcomi 2737 . . 3 ∅ = (Vtx‘∅)
5 eqid 2728 . . 3 (Edg‘∅) = (Edg‘∅)
64, 5isfrgr 30069 . 2 (∅ ∈ FriendGraph ↔ (∅ ∈ USGraph ∧ ∀𝑘 ∈ ∅ ∀𝑙 ∈ (∅ ∖ {𝑘})∃!𝑥 ∈ ∅ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘∅)))
71, 2, 6mpbir2an 710 1 ∅ ∈ FriendGraph
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  wral 3058  ∃!wreu 3371  cdif 3944  wss 3947  c0 4323  {csn 4629  {cpr 4631  cfv 6548  Vtxcvtx 28808  Edgcedg 28859  USGraphcusgr 28961   FriendGraph cfrgr 30067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-ltxr 11283  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-dec 12708  df-slot 17150  df-ndx 17162  df-base 17180  df-edgf 28799  df-vtx 28810  df-iedg 28811  df-usgr 28963  df-frgr 30068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator