MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colopp Structured version   Visualization version   GIF version

Theorem colopp 28777
Description: Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
colopp.b (𝜑𝐵𝑃)
colopp.p (𝜑𝐶𝐷)
colopp.1 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
colopp (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝑡,𝐶   𝐿,𝑎,𝑏,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)

Proof of Theorem colopp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hpgid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 hpgid.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 hpgid.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 hpgid.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 hpgid.a . . . . . . . . . 10 (𝜑𝐴𝑃)
76ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
8 colopp.b . . . . . . . . . 10 (𝜑𝐵𝑃)
98ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
10 eqid 2737 . . . . . . . . . 10 (dist‘𝐺) = (dist‘𝐺)
11 hpgid.o . . . . . . . . . 10 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
12 hpgid.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ran 𝐿)
1312ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
14 simpllr 776 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷))
15 simplr 769 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦𝐷)
16 eleq1w 2824 . . . . . . . . . . . . 13 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵)))
1716adantl 481 . . . . . . . . . . . 12 (((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵)))
18 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐼𝐵))
1915, 17, 18rspcedvd 3624 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
201, 10, 2, 11, 6, 8islnopp 28747 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2120ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2214, 19, 21mpbir2and 713 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑂𝐵)
231, 10, 2, 11, 3, 13, 5, 7, 9, 22oppne3 28751 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝐵)
241, 2, 3, 5, 7, 9, 23tgelrnln 28638 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
251, 2, 3, 5, 7, 9, 23tglinerflx1 28641 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ (𝐴𝐿𝐵))
2614simpld 494 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴𝐷)
27 nelne1 3039 . . . . . . . . 9 ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴𝐷) → (𝐴𝐿𝐵) ≠ 𝐷)
2825, 26, 27syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ≠ 𝐷)
2923neneqd 2945 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 = 𝐵)
30 colopp.1 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
3130orcomd 872 . . . . . . . . . . . 12 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3231ord 865 . . . . . . . . . . 11 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3332ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3429, 33mpd 15 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵))
35 colopp.p . . . . . . . . . 10 (𝜑𝐶𝐷)
3635ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶𝐷)
3734, 36elind 4200 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ 𝐷))
381, 3, 2, 5, 13, 15tglnpt 28557 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦𝑃)
391, 2, 3, 5, 7, 9, 38, 23, 18btwnlng1 28627 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐿𝐵))
4039, 15elind 4200 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ ((𝐴𝐿𝐵) ∩ 𝐷))
411, 2, 3, 5, 24, 13, 28, 37, 40tglineineq 28651 . . . . . . 7 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 = 𝑦)
4241, 18eqeltrd 2841 . . . . . 6 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
4342adantllr 719 . . . . 5 (((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
44 simpr 484 . . . . . 6 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
4516cbvrexvw 3238 . . . . . 6 (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ ∃𝑦𝐷 𝑦 ∈ (𝐴𝐼𝐵))
4644, 45sylib 218 . . . . 5 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑦𝐷 𝑦 ∈ (𝐴𝐼𝐵))
4743, 46r19.29a 3162 . . . 4 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
4835adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝐷)
49 simpr 484 . . . . . . 7 (((𝜑𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶)
5049eleq1d 2826 . . . . . 6 (((𝜑𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
51 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
5248, 50, 51rspcedvd 3624 . . . . 5 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
5352adantlr 715 . . . 4 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
5447, 53impbida 801 . . 3 ((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) → (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
5554pm5.32da 579 . 2 (𝜑 → (((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))))
56 3anrot 1100 . . . 4 ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷𝐶 ∈ (𝐴𝐼𝐵)))
57 df-3an 1089 . . . 4 ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷𝐶 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))
5856, 57bitri 275 . . 3 ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))
5958a1i 11 . 2 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))))
6055, 20, 593bitr4d 311 1 (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cdif 3948   class class class wbr 5143  {copab 5205  ran crn 5686  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441  LineGclng 28442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkg 28461  df-cgrg 28519
This theorem is referenced by:  colhp  28778
  Copyright terms: Public domain W3C validator