| Step | Hyp | Ref
| Expression |
| 1 | | hpgid.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | hpgid.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
| 3 | | hpgid.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
| 4 | | hpgid.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | 4 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG) |
| 6 | | hpgid.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 7 | 6 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ 𝑃) |
| 8 | | colopp.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 9 | 8 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐵 ∈ 𝑃) |
| 10 | | eqid 2737 |
. . . . . . . . . 10
⊢
(dist‘𝐺) =
(dist‘𝐺) |
| 11 | | hpgid.o |
. . . . . . . . . 10
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| 12 | | hpgid.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| 13 | 12 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿) |
| 14 | | simpllr 776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) |
| 15 | | simplr 769 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ 𝐷) |
| 16 | | eleq1w 2824 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑦 → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵))) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (¬
𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵))) |
| 18 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐼𝐵)) |
| 19 | 15, 17, 18 | rspcedvd 3624 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
| 20 | 1, 10, 2, 11, 6, 8 | islnopp 28747 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
| 21 | 20 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
| 22 | 14, 19, 21 | mpbir2and 713 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑂𝐵) |
| 23 | 1, 10, 2, 11, 3, 13, 5, 7, 9,
22 | oppne3 28751 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ≠ 𝐵) |
| 24 | 1, 2, 3, 5, 7, 9, 23 | tgelrnln 28638 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿) |
| 25 | 1, 2, 3, 5, 7, 9, 23 | tglinerflx1 28641 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ (𝐴𝐿𝐵)) |
| 26 | 14 | simpld 494 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 ∈ 𝐷) |
| 27 | | nelne1 3039 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 ∈ 𝐷) → (𝐴𝐿𝐵) ≠ 𝐷) |
| 28 | 25, 26, 27 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ≠ 𝐷) |
| 29 | 23 | neneqd 2945 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 = 𝐵) |
| 30 | | colopp.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
| 31 | 30 | orcomd 872 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐶 ∈ (𝐴𝐿𝐵))) |
| 32 | 31 | ord 865 |
. . . . . . . . . . 11
⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐶 ∈ (𝐴𝐿𝐵))) |
| 33 | 32 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 = 𝐵 → 𝐶 ∈ (𝐴𝐿𝐵))) |
| 34 | 29, 33 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵)) |
| 35 | | colopp.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| 36 | 35 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ 𝐷) |
| 37 | 34, 36 | elind 4200 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ 𝐷)) |
| 38 | 1, 3, 2, 5, 13, 15 | tglnpt 28557 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ 𝑃) |
| 39 | 1, 2, 3, 5, 7, 9, 38, 23, 18 | btwnlng1 28627 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐿𝐵)) |
| 40 | 39, 15 | elind 4200 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ ((𝐴𝐿𝐵) ∩ 𝐷)) |
| 41 | 1, 2, 3, 5, 24, 13, 28, 37, 40 | tglineineq 28651 |
. . . . . . 7
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 = 𝑦) |
| 42 | 41, 18 | eqeltrd 2841 |
. . . . . 6
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
| 43 | 42 | adantllr 719 |
. . . . 5
⊢
(((((𝜑 ∧ (¬
𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
| 44 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
| 45 | 16 | cbvrexvw 3238 |
. . . . . 6
⊢
(∃𝑡 ∈
𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ ∃𝑦 ∈ 𝐷 𝑦 ∈ (𝐴𝐼𝐵)) |
| 46 | 44, 45 | sylib 218 |
. . . . 5
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑦 ∈ 𝐷 𝑦 ∈ (𝐴𝐼𝐵)) |
| 47 | 43, 46 | r19.29a 3162 |
. . . 4
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
| 48 | 35 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ 𝐷) |
| 49 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶) |
| 50 | 49 | eleq1d 2826 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 51 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
| 52 | 48, 50, 51 | rspcedvd 3624 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
| 53 | 52 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
| 54 | 47, 53 | impbida 801 |
. . 3
⊢ ((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 55 | 54 | pm5.32da 579 |
. 2
⊢ (𝜑 → (((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))) |
| 56 | | 3anrot 1100 |
. . . 4
⊢ ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 57 | | df-3an 1089 |
. . . 4
⊢ ((¬
𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 58 | 56, 57 | bitri 275 |
. . 3
⊢ ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 59 | 58 | a1i 11 |
. 2
⊢ (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))) |
| 60 | 55, 20, 59 | 3bitr4d 311 |
1
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷))) |