MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colopp Structured version   Visualization version   GIF version

Theorem colopp 28791
Description: Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
colopp.b (𝜑𝐵𝑃)
colopp.p (𝜑𝐶𝐷)
colopp.1 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
colopp (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝑡,𝐶   𝐿,𝑎,𝑏,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)

Proof of Theorem colopp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hpgid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 hpgid.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 hpgid.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 hpgid.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 hpgid.a . . . . . . . . . 10 (𝜑𝐴𝑃)
76ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
8 colopp.b . . . . . . . . . 10 (𝜑𝐵𝑃)
98ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
10 eqid 2734 . . . . . . . . . 10 (dist‘𝐺) = (dist‘𝐺)
11 hpgid.o . . . . . . . . . 10 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
12 hpgid.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ran 𝐿)
1312ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
14 simpllr 776 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷))
15 simplr 769 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦𝐷)
16 eleq1w 2821 . . . . . . . . . . . . 13 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵)))
1716adantl 481 . . . . . . . . . . . 12 (((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵)))
18 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐼𝐵))
1915, 17, 18rspcedvd 3623 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
201, 10, 2, 11, 6, 8islnopp 28761 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2120ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2214, 19, 21mpbir2and 713 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑂𝐵)
231, 10, 2, 11, 3, 13, 5, 7, 9, 22oppne3 28765 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝐵)
241, 2, 3, 5, 7, 9, 23tgelrnln 28652 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
251, 2, 3, 5, 7, 9, 23tglinerflx1 28655 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ (𝐴𝐿𝐵))
2614simpld 494 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴𝐷)
27 nelne1 3036 . . . . . . . . 9 ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴𝐷) → (𝐴𝐿𝐵) ≠ 𝐷)
2825, 26, 27syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ≠ 𝐷)
2923neneqd 2942 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 = 𝐵)
30 colopp.1 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
3130orcomd 871 . . . . . . . . . . . 12 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3231ord 864 . . . . . . . . . . 11 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3332ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3429, 33mpd 15 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵))
35 colopp.p . . . . . . . . . 10 (𝜑𝐶𝐷)
3635ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶𝐷)
3734, 36elind 4209 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ 𝐷))
381, 3, 2, 5, 13, 15tglnpt 28571 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦𝑃)
391, 2, 3, 5, 7, 9, 38, 23, 18btwnlng1 28641 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐿𝐵))
4039, 15elind 4209 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ ((𝐴𝐿𝐵) ∩ 𝐷))
411, 2, 3, 5, 24, 13, 28, 37, 40tglineineq 28665 . . . . . . 7 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 = 𝑦)
4241, 18eqeltrd 2838 . . . . . 6 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
4342adantllr 719 . . . . 5 (((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
44 simpr 484 . . . . . 6 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
4516cbvrexvw 3235 . . . . . 6 (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ ∃𝑦𝐷 𝑦 ∈ (𝐴𝐼𝐵))
4644, 45sylib 218 . . . . 5 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑦𝐷 𝑦 ∈ (𝐴𝐼𝐵))
4743, 46r19.29a 3159 . . . 4 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
4835adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝐷)
49 simpr 484 . . . . . . 7 (((𝜑𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶)
5049eleq1d 2823 . . . . . 6 (((𝜑𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
51 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
5248, 50, 51rspcedvd 3623 . . . . 5 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
5352adantlr 715 . . . 4 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
5447, 53impbida 801 . . 3 ((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) → (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
5554pm5.32da 579 . 2 (𝜑 → (((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))))
56 3anrot 1099 . . . 4 ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷𝐶 ∈ (𝐴𝐼𝐵)))
57 df-3an 1088 . . . 4 ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷𝐶 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))
5856, 57bitri 275 . . 3 ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))
5958a1i 11 . 2 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))))
6055, 20, 593bitr4d 311 1 (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067  cdif 3959   class class class wbr 5147  {copab 5209  ran crn 5689  cfv 6562  (class class class)co 7430  Basecbs 17244  distcds 17306  TarskiGcstrkg 28449  Itvcitv 28455  LineGclng 28456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-concat 14605  df-s1 14630  df-s2 14883  df-s3 14884  df-trkgc 28470  df-trkgb 28471  df-trkgcb 28472  df-trkg 28475  df-cgrg 28533
This theorem is referenced by:  colhp  28792
  Copyright terms: Public domain W3C validator