MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colopp Structured version   Visualization version   GIF version

Theorem colopp 26567
Description: Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
colopp.b (𝜑𝐵𝑃)
colopp.p (𝜑𝐶𝐷)
colopp.1 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
colopp (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝑡,𝐶   𝐿,𝑎,𝑏,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)

Proof of Theorem colopp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hpgid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 hpgid.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 hpgid.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 hpgid.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 hpgid.a . . . . . . . . . 10 (𝜑𝐴𝑃)
76ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
8 colopp.b . . . . . . . . . 10 (𝜑𝐵𝑃)
98ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
10 eqid 2801 . . . . . . . . . 10 (dist‘𝐺) = (dist‘𝐺)
11 hpgid.o . . . . . . . . . 10 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
12 hpgid.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ran 𝐿)
1312ad3antrrr 729 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
14 simpllr 775 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷))
15 simplr 768 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦𝐷)
16 eleq1w 2875 . . . . . . . . . . . . 13 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵)))
1716adantl 485 . . . . . . . . . . . 12 (((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵)))
18 simpr 488 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐼𝐵))
1915, 17, 18rspcedvd 3577 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
201, 10, 2, 11, 6, 8islnopp 26537 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2120ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2214, 19, 21mpbir2and 712 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑂𝐵)
231, 10, 2, 11, 3, 13, 5, 7, 9, 22oppne3 26541 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝐵)
241, 2, 3, 5, 7, 9, 23tgelrnln 26428 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
251, 2, 3, 5, 7, 9, 23tglinerflx1 26431 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ (𝐴𝐿𝐵))
2614simpld 498 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴𝐷)
27 nelne1 3086 . . . . . . . . 9 ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴𝐷) → (𝐴𝐿𝐵) ≠ 𝐷)
2825, 26, 27syl2anc 587 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ≠ 𝐷)
2923neneqd 2995 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 = 𝐵)
30 colopp.1 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
3130orcomd 868 . . . . . . . . . . . 12 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3231ord 861 . . . . . . . . . . 11 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3332ad3antrrr 729 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3429, 33mpd 15 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵))
35 colopp.p . . . . . . . . . 10 (𝜑𝐶𝐷)
3635ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶𝐷)
3734, 36elind 4124 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ 𝐷))
381, 3, 2, 5, 13, 15tglnpt 26347 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦𝑃)
391, 2, 3, 5, 7, 9, 38, 23, 18btwnlng1 26417 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐿𝐵))
4039, 15elind 4124 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ ((𝐴𝐿𝐵) ∩ 𝐷))
411, 2, 3, 5, 24, 13, 28, 37, 40tglineineq 26441 . . . . . . 7 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 = 𝑦)
4241, 18eqeltrd 2893 . . . . . 6 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
4342adantllr 718 . . . . 5 (((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
44 simpr 488 . . . . . 6 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
4516cbvrexvw 3400 . . . . . 6 (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ ∃𝑦𝐷 𝑦 ∈ (𝐴𝐼𝐵))
4644, 45sylib 221 . . . . 5 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑦𝐷 𝑦 ∈ (𝐴𝐼𝐵))
4743, 46r19.29a 3251 . . . 4 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
4835adantr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝐷)
49 simpr 488 . . . . . . 7 (((𝜑𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶)
5049eleq1d 2877 . . . . . 6 (((𝜑𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
51 simpr 488 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
5248, 50, 51rspcedvd 3577 . . . . 5 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
5352adantlr 714 . . . 4 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
5447, 53impbida 800 . . 3 ((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) → (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
5554pm5.32da 582 . 2 (𝜑 → (((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))))
56 3anrot 1097 . . . 4 ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷𝐶 ∈ (𝐴𝐼𝐵)))
57 df-3an 1086 . . . 4 ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷𝐶 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))
5856, 57bitri 278 . . 3 ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))
5958a1i 11 . 2 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))))
6055, 20, 593bitr4d 314 1 (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wrex 3110  cdif 3881   class class class wbr 5033  {copab 5095  ran crn 5524  cfv 6328  (class class class)co 7139  Basecbs 16479  distcds 16570  TarskiGcstrkg 26228  Itvcitv 26234  LineGclng 26235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-trkgc 26246  df-trkgb 26247  df-trkgcb 26248  df-trkg 26251  df-cgrg 26309
This theorem is referenced by:  colhp  26568
  Copyright terms: Public domain W3C validator