Step | Hyp | Ref
| Expression |
1 | | hpgid.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
2 | | hpgid.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
3 | | hpgid.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
4 | | hpgid.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG) |
6 | | hpgid.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
7 | 6 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ 𝑃) |
8 | | colopp.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
9 | 8 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐵 ∈ 𝑃) |
10 | | eqid 2738 |
. . . . . . . . . 10
⊢
(dist‘𝐺) =
(dist‘𝐺) |
11 | | hpgid.o |
. . . . . . . . . 10
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
12 | | hpgid.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
13 | 12 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿) |
14 | | simpllr 772 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) |
15 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ 𝐷) |
16 | | eleq1w 2821 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑦 → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵))) |
17 | 16 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (¬
𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵))) |
18 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐼𝐵)) |
19 | 15, 17, 18 | rspcedvd 3555 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
20 | 1, 10, 2, 11, 6, 8 | islnopp 27004 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
21 | 20 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
22 | 14, 19, 21 | mpbir2and 709 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑂𝐵) |
23 | 1, 10, 2, 11, 3, 13, 5, 7, 9,
22 | oppne3 27008 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ≠ 𝐵) |
24 | 1, 2, 3, 5, 7, 9, 23 | tgelrnln 26895 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿) |
25 | 1, 2, 3, 5, 7, 9, 23 | tglinerflx1 26898 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ (𝐴𝐿𝐵)) |
26 | 14 | simpld 494 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 ∈ 𝐷) |
27 | | nelne1 3040 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 ∈ 𝐷) → (𝐴𝐿𝐵) ≠ 𝐷) |
28 | 25, 26, 27 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ≠ 𝐷) |
29 | 23 | neneqd 2947 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 = 𝐵) |
30 | | colopp.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
31 | 30 | orcomd 867 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐶 ∈ (𝐴𝐿𝐵))) |
32 | 31 | ord 860 |
. . . . . . . . . . 11
⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐶 ∈ (𝐴𝐿𝐵))) |
33 | 32 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 = 𝐵 → 𝐶 ∈ (𝐴𝐿𝐵))) |
34 | 29, 33 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵)) |
35 | | colopp.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ 𝐷) |
36 | 35 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ 𝐷) |
37 | 34, 36 | elind 4124 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ 𝐷)) |
38 | 1, 3, 2, 5, 13, 15 | tglnpt 26814 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ 𝑃) |
39 | 1, 2, 3, 5, 7, 9, 38, 23, 18 | btwnlng1 26884 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐿𝐵)) |
40 | 39, 15 | elind 4124 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ ((𝐴𝐿𝐵) ∩ 𝐷)) |
41 | 1, 2, 3, 5, 24, 13, 28, 37, 40 | tglineineq 26908 |
. . . . . . 7
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 = 𝑦) |
42 | 41, 18 | eqeltrd 2839 |
. . . . . 6
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
43 | 42 | adantllr 715 |
. . . . 5
⊢
(((((𝜑 ∧ (¬
𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
44 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
45 | 16 | cbvrexvw 3373 |
. . . . . 6
⊢
(∃𝑡 ∈
𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ ∃𝑦 ∈ 𝐷 𝑦 ∈ (𝐴𝐼𝐵)) |
46 | 44, 45 | sylib 217 |
. . . . 5
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑦 ∈ 𝐷 𝑦 ∈ (𝐴𝐼𝐵)) |
47 | 43, 46 | r19.29a 3217 |
. . . 4
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
48 | 35 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ 𝐷) |
49 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶) |
50 | 49 | eleq1d 2823 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵))) |
51 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
52 | 48, 50, 51 | rspcedvd 3555 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
53 | 52 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
54 | 47, 53 | impbida 797 |
. . 3
⊢ ((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵))) |
55 | 54 | pm5.32da 578 |
. 2
⊢ (𝜑 → (((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))) |
56 | | 3anrot 1098 |
. . . 4
⊢ ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ (𝐴𝐼𝐵))) |
57 | | df-3an 1087 |
. . . 4
⊢ ((¬
𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))) |
58 | 56, 57 | bitri 274 |
. . 3
⊢ ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))) |
59 | 58 | a1i 11 |
. 2
⊢ (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))) |
60 | 55, 20, 59 | 3bitr4d 310 |
1
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷))) |