MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colopp Structured version   Visualization version   GIF version

Theorem colopp 28714
Description: Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
colopp.b (𝜑𝐵𝑃)
colopp.p (𝜑𝐶𝐷)
colopp.1 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
colopp (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝑡,𝐶   𝐿,𝑎,𝑏,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)

Proof of Theorem colopp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hpgid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 hpgid.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 hpgid.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 hpgid.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 hpgid.a . . . . . . . . . 10 (𝜑𝐴𝑃)
76ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
8 colopp.b . . . . . . . . . 10 (𝜑𝐵𝑃)
98ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
10 eqid 2729 . . . . . . . . . 10 (dist‘𝐺) = (dist‘𝐺)
11 hpgid.o . . . . . . . . . 10 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
12 hpgid.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ran 𝐿)
1312ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
14 simpllr 775 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷))
15 simplr 768 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦𝐷)
16 eleq1w 2811 . . . . . . . . . . . . 13 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵)))
1716adantl 481 . . . . . . . . . . . 12 (((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵)))
18 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐼𝐵))
1915, 17, 18rspcedvd 3579 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
201, 10, 2, 11, 6, 8islnopp 28684 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2120ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2214, 19, 21mpbir2and 713 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑂𝐵)
231, 10, 2, 11, 3, 13, 5, 7, 9, 22oppne3 28688 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝐵)
241, 2, 3, 5, 7, 9, 23tgelrnln 28575 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
251, 2, 3, 5, 7, 9, 23tglinerflx1 28578 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ (𝐴𝐿𝐵))
2614simpld 494 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴𝐷)
27 nelne1 3022 . . . . . . . . 9 ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴𝐷) → (𝐴𝐿𝐵) ≠ 𝐷)
2825, 26, 27syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ≠ 𝐷)
2923neneqd 2930 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 = 𝐵)
30 colopp.1 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
3130orcomd 871 . . . . . . . . . . . 12 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3231ord 864 . . . . . . . . . . 11 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3332ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3429, 33mpd 15 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵))
35 colopp.p . . . . . . . . . 10 (𝜑𝐶𝐷)
3635ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶𝐷)
3734, 36elind 4151 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ 𝐷))
381, 3, 2, 5, 13, 15tglnpt 28494 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦𝑃)
391, 2, 3, 5, 7, 9, 38, 23, 18btwnlng1 28564 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐿𝐵))
4039, 15elind 4151 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ ((𝐴𝐿𝐵) ∩ 𝐷))
411, 2, 3, 5, 24, 13, 28, 37, 40tglineineq 28588 . . . . . . 7 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 = 𝑦)
4241, 18eqeltrd 2828 . . . . . 6 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
4342adantllr 719 . . . . 5 (((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
44 simpr 484 . . . . . 6 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
4516cbvrexvw 3208 . . . . . 6 (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ ∃𝑦𝐷 𝑦 ∈ (𝐴𝐼𝐵))
4644, 45sylib 218 . . . . 5 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑦𝐷 𝑦 ∈ (𝐴𝐼𝐵))
4743, 46r19.29a 3137 . . . 4 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
4835adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝐷)
49 simpr 484 . . . . . . 7 (((𝜑𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶)
5049eleq1d 2813 . . . . . 6 (((𝜑𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
51 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
5248, 50, 51rspcedvd 3579 . . . . 5 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
5352adantlr 715 . . . 4 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
5447, 53impbida 800 . . 3 ((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) → (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
5554pm5.32da 579 . 2 (𝜑 → (((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))))
56 3anrot 1099 . . . 4 ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷𝐶 ∈ (𝐴𝐼𝐵)))
57 df-3an 1088 . . . 4 ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷𝐶 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))
5856, 57bitri 275 . . 3 ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))
5958a1i 11 . 2 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))))
6055, 20, 593bitr4d 311 1 (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3900   class class class wbr 5092  {copab 5154  ran crn 5620  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28393  df-trkgb 28394  df-trkgcb 28395  df-trkg 28398  df-cgrg 28456
This theorem is referenced by:  colhp  28715
  Copyright terms: Public domain W3C validator