MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppperpex Structured version   Visualization version   GIF version

Theorem oppperpex 28776
Description: Restating colperpex 28756 using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
oppperpex.1 (𝜑𝐴𝐷)
oppperpex.2 (𝜑𝐶𝑃)
oppperpex.3 (𝜑 → ¬ 𝐶𝐷)
oppperpex.4 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
oppperpex (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝐴,𝑝,𝑡   𝐷,𝑝,𝑡   𝐶,𝑝,𝑡   𝐺,𝑝,𝑡   𝑡,𝐿   𝐼,𝑝,𝑡   𝐾,𝑝,𝑡   𝑡,𝑂   𝑃,𝑝,𝑡   𝜑,𝑝,𝑡   ,𝑝,𝑡   𝑡,𝑎,𝑏   𝐿,𝑝
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑝,𝑎,𝑏)

Proof of Theorem oppperpex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprrl 781 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥))
2 hpg.p . . . . . . 7 𝑃 = (Base‘𝐺)
3 hpg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
4 opphl.l . . . . . . 7 𝐿 = (LineG‘𝐺)
5 opphl.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐺 ∈ TarskiG)
7 opphl.d . . . . . . . . 9 (𝜑𝐷 ∈ ran 𝐿)
87ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷 ∈ ran 𝐿)
9 oppperpex.1 . . . . . . . . 9 (𝜑𝐴𝐷)
109ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝐷)
112, 4, 3, 6, 8, 10tglnpt 28572 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝑃)
12 simplr 769 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝑥𝐷)
132, 4, 3, 6, 8, 12tglnpt 28572 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝑥𝑃)
14 simpr 484 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝑥)
152, 3, 4, 6, 11, 13, 14, 14, 8, 10, 12tglinethru 28659 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷 = (𝐴𝐿𝑥))
1615adantr 480 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐷 = (𝐴𝐿𝑥))
171, 16breqtrrd 5176 . . . 4 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐴𝐿𝑝)(⟂G‘𝐺)𝐷)
18 oppperpex.3 . . . . . . 7 (𝜑 → ¬ 𝐶𝐷)
1918ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ¬ 𝐶𝐷)
20 hpg.d . . . . . . 7 = (dist‘𝐺)
216adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐺 ∈ TarskiG)
228adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐷 ∈ ran 𝐿)
2310adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐴𝐷)
24 simprl 771 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝑝𝑃)
252, 20, 3, 4, 21, 22, 23, 24, 17footne 28746 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ¬ 𝑝𝐷)
2614ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝐴𝑥)
2726neneqd 2943 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → ¬ 𝐴 = 𝑥)
28 simprrl 781 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
2928orcomd 871 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝐴 = 𝑥𝑡 ∈ (𝐴𝐿𝑥)))
3029ord 864 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (¬ 𝐴 = 𝑥𝑡 ∈ (𝐴𝐿𝑥)))
3127, 30mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡 ∈ (𝐴𝐿𝑥))
3215ad3antrrr 730 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝐷 = (𝐴𝐿𝑥))
3331, 32eleqtrrd 2842 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡𝐷)
34 simprrr 782 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡 ∈ (𝐶𝐼𝑝))
3533, 34jca 511 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝑡𝐷𝑡 ∈ (𝐶𝐼𝑝)))
3635ex 412 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → ((𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))) → (𝑡𝐷𝑡 ∈ (𝐶𝐼𝑝))))
3736reximdv2 3162 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → (∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝)))
3837impr 454 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))
3938anasss 466 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))
4019, 25, 39jca31 514 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝)))
41 hpg.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
42 oppperpex.2 . . . . . . . . . 10 (𝜑𝐶𝑃)
4342ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐶𝑃)
4443ad2antrr 726 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → 𝐶𝑃)
45 simplr 769 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → 𝑝𝑃)
462, 20, 3, 41, 44, 45islnopp 28762 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4746adantrr 717 . . . . . 6 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4847anasss 466 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4940, 48mpbird 257 . . . 4 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐶𝑂𝑝)
5017, 49jca 511 . . 3 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
51 oppperpex.4 . . . . 5 (𝜑𝐺DimTarskiG≥2)
5251ad2antrr 726 . . . 4 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐺DimTarskiG≥2)
532, 20, 3, 4, 6, 11, 13, 43, 14, 52colperpex 28756 . . 3 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
5450, 53reximddv 3169 . 2 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
552, 3, 4, 5, 7, 9tglnpt2 28664 . 2 (𝜑 → ∃𝑥𝐷 𝐴𝑥)
5654, 55r19.29a 3160 1 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wrex 3068  cdif 3960   class class class wbr 5148  {copab 5210  ran crn 5690  cfv 6563  (class class class)co 7431  2c2 12319  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  DimTarskiGcstrkgld 28454  Itvcitv 28456  LineGclng 28457  hlGchlg 28623  ⟂Gcperpg 28718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkgld 28475  df-trkg 28476  df-cgrg 28534  df-leg 28606  df-mir 28676  df-rag 28717  df-perpg 28719
This theorem is referenced by:  lnperpex  28826
  Copyright terms: Public domain W3C validator