MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppperpex Structured version   Visualization version   GIF version

Theorem oppperpex 28732
Description: Restating colperpex 28712 using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
oppperpex.1 (𝜑𝐴𝐷)
oppperpex.2 (𝜑𝐶𝑃)
oppperpex.3 (𝜑 → ¬ 𝐶𝐷)
oppperpex.4 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
oppperpex (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝐴,𝑝,𝑡   𝐷,𝑝,𝑡   𝐶,𝑝,𝑡   𝐺,𝑝,𝑡   𝑡,𝐿   𝐼,𝑝,𝑡   𝐾,𝑝,𝑡   𝑡,𝑂   𝑃,𝑝,𝑡   𝜑,𝑝,𝑡   ,𝑝,𝑡   𝑡,𝑎,𝑏   𝐿,𝑝
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑝,𝑎,𝑏)

Proof of Theorem oppperpex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprrl 780 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥))
2 hpg.p . . . . . . 7 𝑃 = (Base‘𝐺)
3 hpg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
4 opphl.l . . . . . . 7 𝐿 = (LineG‘𝐺)
5 opphl.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐺 ∈ TarskiG)
7 opphl.d . . . . . . . . 9 (𝜑𝐷 ∈ ran 𝐿)
87ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷 ∈ ran 𝐿)
9 oppperpex.1 . . . . . . . . 9 (𝜑𝐴𝐷)
109ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝐷)
112, 4, 3, 6, 8, 10tglnpt 28528 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝑃)
12 simplr 768 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝑥𝐷)
132, 4, 3, 6, 8, 12tglnpt 28528 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝑥𝑃)
14 simpr 484 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝑥)
152, 3, 4, 6, 11, 13, 14, 14, 8, 10, 12tglinethru 28615 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷 = (𝐴𝐿𝑥))
1615adantr 480 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐷 = (𝐴𝐿𝑥))
171, 16breqtrrd 5147 . . . 4 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐴𝐿𝑝)(⟂G‘𝐺)𝐷)
18 oppperpex.3 . . . . . . 7 (𝜑 → ¬ 𝐶𝐷)
1918ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ¬ 𝐶𝐷)
20 hpg.d . . . . . . 7 = (dist‘𝐺)
216adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐺 ∈ TarskiG)
228adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐷 ∈ ran 𝐿)
2310adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐴𝐷)
24 simprl 770 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝑝𝑃)
252, 20, 3, 4, 21, 22, 23, 24, 17footne 28702 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ¬ 𝑝𝐷)
2614ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝐴𝑥)
2726neneqd 2937 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → ¬ 𝐴 = 𝑥)
28 simprrl 780 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
2928orcomd 871 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝐴 = 𝑥𝑡 ∈ (𝐴𝐿𝑥)))
3029ord 864 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (¬ 𝐴 = 𝑥𝑡 ∈ (𝐴𝐿𝑥)))
3127, 30mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡 ∈ (𝐴𝐿𝑥))
3215ad3antrrr 730 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝐷 = (𝐴𝐿𝑥))
3331, 32eleqtrrd 2837 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡𝐷)
34 simprrr 781 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡 ∈ (𝐶𝐼𝑝))
3533, 34jca 511 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝑡𝐷𝑡 ∈ (𝐶𝐼𝑝)))
3635ex 412 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → ((𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))) → (𝑡𝐷𝑡 ∈ (𝐶𝐼𝑝))))
3736reximdv2 3150 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → (∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝)))
3837impr 454 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))
3938anasss 466 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))
4019, 25, 39jca31 514 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝)))
41 hpg.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
42 oppperpex.2 . . . . . . . . . 10 (𝜑𝐶𝑃)
4342ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐶𝑃)
4443ad2antrr 726 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → 𝐶𝑃)
45 simplr 768 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → 𝑝𝑃)
462, 20, 3, 41, 44, 45islnopp 28718 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4746adantrr 717 . . . . . 6 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4847anasss 466 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4940, 48mpbird 257 . . . 4 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐶𝑂𝑝)
5017, 49jca 511 . . 3 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
51 oppperpex.4 . . . . 5 (𝜑𝐺DimTarskiG≥2)
5251ad2antrr 726 . . . 4 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐺DimTarskiG≥2)
532, 20, 3, 4, 6, 11, 13, 43, 14, 52colperpex 28712 . . 3 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
5450, 53reximddv 3156 . 2 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
552, 3, 4, 5, 7, 9tglnpt2 28620 . 2 (𝜑 → ∃𝑥𝐷 𝐴𝑥)
5654, 55r19.29a 3148 1 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wrex 3060  cdif 3923   class class class wbr 5119  {copab 5181  ran crn 5655  cfv 6531  (class class class)co 7405  2c2 12295  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  DimTarskiGcstrkgld 28410  Itvcitv 28412  LineGclng 28413  hlGchlg 28579  ⟂Gcperpg 28674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkgld 28431  df-trkg 28432  df-cgrg 28490  df-leg 28562  df-mir 28632  df-rag 28673  df-perpg 28675
This theorem is referenced by:  lnperpex  28782
  Copyright terms: Public domain W3C validator