MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppperpex Structured version   Visualization version   GIF version

Theorem oppperpex 27095
Description: Restating colperpex 27075 using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
oppperpex.1 (𝜑𝐴𝐷)
oppperpex.2 (𝜑𝐶𝑃)
oppperpex.3 (𝜑 → ¬ 𝐶𝐷)
oppperpex.4 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
oppperpex (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝐴,𝑝,𝑡   𝐷,𝑝,𝑡   𝐶,𝑝,𝑡   𝐺,𝑝,𝑡   𝑡,𝐿   𝐼,𝑝,𝑡   𝐾,𝑝,𝑡   𝑡,𝑂   𝑃,𝑝,𝑡   𝜑,𝑝,𝑡   ,𝑝,𝑡   𝑡,𝑎,𝑏   𝐿,𝑝
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑝,𝑎,𝑏)

Proof of Theorem oppperpex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprrl 777 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥))
2 hpg.p . . . . . . 7 𝑃 = (Base‘𝐺)
3 hpg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
4 opphl.l . . . . . . 7 𝐿 = (LineG‘𝐺)
5 opphl.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 722 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐺 ∈ TarskiG)
7 opphl.d . . . . . . . . 9 (𝜑𝐷 ∈ ran 𝐿)
87ad2antrr 722 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷 ∈ ran 𝐿)
9 oppperpex.1 . . . . . . . . 9 (𝜑𝐴𝐷)
109ad2antrr 722 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝐷)
112, 4, 3, 6, 8, 10tglnpt 26891 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝑃)
12 simplr 765 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝑥𝐷)
132, 4, 3, 6, 8, 12tglnpt 26891 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝑥𝑃)
14 simpr 484 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝑥)
152, 3, 4, 6, 11, 13, 14, 14, 8, 10, 12tglinethru 26978 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷 = (𝐴𝐿𝑥))
1615adantr 480 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐷 = (𝐴𝐿𝑥))
171, 16breqtrrd 5106 . . . 4 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐴𝐿𝑝)(⟂G‘𝐺)𝐷)
18 oppperpex.3 . . . . . . 7 (𝜑 → ¬ 𝐶𝐷)
1918ad3antrrr 726 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ¬ 𝐶𝐷)
20 hpg.d . . . . . . 7 = (dist‘𝐺)
216adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐺 ∈ TarskiG)
228adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐷 ∈ ran 𝐿)
2310adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐴𝐷)
24 simprl 767 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝑝𝑃)
252, 20, 3, 4, 21, 22, 23, 24, 17footne 27065 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ¬ 𝑝𝐷)
2614ad3antrrr 726 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝐴𝑥)
2726neneqd 2949 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → ¬ 𝐴 = 𝑥)
28 simprrl 777 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
2928orcomd 867 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝐴 = 𝑥𝑡 ∈ (𝐴𝐿𝑥)))
3029ord 860 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (¬ 𝐴 = 𝑥𝑡 ∈ (𝐴𝐿𝑥)))
3127, 30mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡 ∈ (𝐴𝐿𝑥))
3215ad3antrrr 726 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝐷 = (𝐴𝐿𝑥))
3331, 32eleqtrrd 2843 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡𝐷)
34 simprrr 778 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡 ∈ (𝐶𝐼𝑝))
3533, 34jca 511 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝑡𝐷𝑡 ∈ (𝐶𝐼𝑝)))
3635ex 412 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → ((𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))) → (𝑡𝐷𝑡 ∈ (𝐶𝐼𝑝))))
3736reximdv2 3200 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → (∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝)))
3837impr 454 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))
3938anasss 466 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))
4019, 25, 39jca31 514 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝)))
41 hpg.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
42 oppperpex.2 . . . . . . . . . 10 (𝜑𝐶𝑃)
4342ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐶𝑃)
4443ad2antrr 722 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → 𝐶𝑃)
45 simplr 765 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → 𝑝𝑃)
462, 20, 3, 41, 44, 45islnopp 27081 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4746adantrr 713 . . . . . 6 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4847anasss 466 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4940, 48mpbird 256 . . . 4 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐶𝑂𝑝)
5017, 49jca 511 . . 3 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
51 oppperpex.4 . . . . 5 (𝜑𝐺DimTarskiG≥2)
5251ad2antrr 722 . . . 4 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐺DimTarskiG≥2)
532, 20, 3, 4, 6, 11, 13, 43, 14, 52colperpex 27075 . . 3 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
5450, 53reximddv 3205 . 2 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
552, 3, 4, 5, 7, 9tglnpt2 26983 . 2 (𝜑 → ∃𝑥𝐷 𝐴𝑥)
5654, 55r19.29a 3219 1 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1541  wcel 2109  wne 2944  wrex 3066  cdif 3888   class class class wbr 5078  {copab 5140  ran crn 5589  cfv 6430  (class class class)co 7268  2c2 12011  Basecbs 16893  distcds 16952  TarskiGcstrkg 26769  DimTarskiGcstrkgld 26773  Itvcitv 26775  LineGclng 26776  hlGchlg 26942  ⟂Gcperpg 27037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-xnn0 12289  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-hash 14026  df-word 14199  df-concat 14255  df-s1 14282  df-s2 14542  df-s3 14543  df-trkgc 26790  df-trkgb 26791  df-trkgcb 26792  df-trkgld 26794  df-trkg 26795  df-cgrg 26853  df-leg 26925  df-mir 26995  df-rag 27036  df-perpg 27038
This theorem is referenced by:  lnperpex  27145
  Copyright terms: Public domain W3C validator