MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppperpex Structured version   Visualization version   GIF version

Theorem oppperpex 26816
Description: Restating colperpex 26796 using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
oppperpex.1 (𝜑𝐴𝐷)
oppperpex.2 (𝜑𝐶𝑃)
oppperpex.3 (𝜑 → ¬ 𝐶𝐷)
oppperpex.4 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
oppperpex (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝐴,𝑝,𝑡   𝐷,𝑝,𝑡   𝐶,𝑝,𝑡   𝐺,𝑝,𝑡   𝑡,𝐿   𝐼,𝑝,𝑡   𝐾,𝑝,𝑡   𝑡,𝑂   𝑃,𝑝,𝑡   𝜑,𝑝,𝑡   ,𝑝,𝑡   𝑡,𝑎,𝑏   𝐿,𝑝
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑝,𝑎,𝑏)

Proof of Theorem oppperpex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprrl 781 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥))
2 hpg.p . . . . . . 7 𝑃 = (Base‘𝐺)
3 hpg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
4 opphl.l . . . . . . 7 𝐿 = (LineG‘𝐺)
5 opphl.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐺 ∈ TarskiG)
7 opphl.d . . . . . . . . 9 (𝜑𝐷 ∈ ran 𝐿)
87ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷 ∈ ran 𝐿)
9 oppperpex.1 . . . . . . . . 9 (𝜑𝐴𝐷)
109ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝐷)
112, 4, 3, 6, 8, 10tglnpt 26612 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝑃)
12 simplr 769 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝑥𝐷)
132, 4, 3, 6, 8, 12tglnpt 26612 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝑥𝑃)
14 simpr 488 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝑥)
152, 3, 4, 6, 11, 13, 14, 14, 8, 10, 12tglinethru 26699 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷 = (𝐴𝐿𝑥))
1615adantr 484 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐷 = (𝐴𝐿𝑥))
171, 16breqtrrd 5071 . . . 4 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐴𝐿𝑝)(⟂G‘𝐺)𝐷)
18 oppperpex.3 . . . . . . 7 (𝜑 → ¬ 𝐶𝐷)
1918ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ¬ 𝐶𝐷)
20 hpg.d . . . . . . 7 = (dist‘𝐺)
216adantr 484 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐺 ∈ TarskiG)
228adantr 484 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐷 ∈ ran 𝐿)
2310adantr 484 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐴𝐷)
24 simprl 771 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝑝𝑃)
252, 20, 3, 4, 21, 22, 23, 24, 17footne 26786 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ¬ 𝑝𝐷)
2614ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝐴𝑥)
2726neneqd 2940 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → ¬ 𝐴 = 𝑥)
28 simprrl 781 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
2928orcomd 871 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝐴 = 𝑥𝑡 ∈ (𝐴𝐿𝑥)))
3029ord 864 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (¬ 𝐴 = 𝑥𝑡 ∈ (𝐴𝐿𝑥)))
3127, 30mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡 ∈ (𝐴𝐿𝑥))
3215ad3antrrr 730 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝐷 = (𝐴𝐿𝑥))
3331, 32eleqtrrd 2837 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡𝐷)
34 simprrr 782 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → 𝑡 ∈ (𝐶𝐼𝑝))
3533, 34jca 515 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) ∧ (𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝑡𝐷𝑡 ∈ (𝐶𝐼𝑝)))
3635ex 416 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → ((𝑡𝑃 ∧ ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))) → (𝑡𝐷𝑡 ∈ (𝐶𝐼𝑝))))
3736reximdv2 3183 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → (∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝)))
3837impr 458 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))
3938anasss 470 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))
4019, 25, 39jca31 518 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝)))
41 hpg.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
42 oppperpex.2 . . . . . . . . . 10 (𝜑𝐶𝑃)
4342ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐶𝑃)
4443ad2antrr 726 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → 𝐶𝑃)
45 simplr 769 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → 𝑝𝑃)
462, 20, 3, 41, 44, 45islnopp 26802 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥)) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4746adantrr 717 . . . . . 6 (((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4847anasss 470 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → (𝐶𝑂𝑝 ↔ ((¬ 𝐶𝐷 ∧ ¬ 𝑝𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐶𝐼𝑝))))
4940, 48mpbird 260 . . . 4 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → 𝐶𝑂𝑝)
5017, 49jca 515 . . 3 ((((𝜑𝑥𝐷) ∧ 𝐴𝑥) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
51 oppperpex.4 . . . . 5 (𝜑𝐺DimTarskiG≥2)
5251ad2antrr 726 . . . 4 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐺DimTarskiG≥2)
532, 20, 3, 4, 6, 11, 13, 43, 14, 52colperpex 26796 . . 3 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝑥) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
5450, 53reximddv 3187 . 2 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
552, 3, 4, 5, 7, 9tglnpt2 26704 . 2 (𝜑 → ∃𝑥𝐷 𝐴𝑥)
5654, 55r19.29a 3201 1 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2935  wrex 3055  cdif 3854   class class class wbr 5043  {copab 5105  ran crn 5541  cfv 6369  (class class class)co 7202  2c2 11868  Basecbs 16684  distcds 16776  TarskiGcstrkg 26493  DimTarskiGcstrkgld 26497  Itvcitv 26499  LineGclng 26500  hlGchlg 26663  ⟂Gcperpg 26758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-concat 14109  df-s1 14136  df-s2 14396  df-s3 14397  df-trkgc 26511  df-trkgb 26512  df-trkgcb 26513  df-trkgld 26515  df-trkg 26516  df-cgrg 26574  df-leg 26646  df-mir 26716  df-rag 26757  df-perpg 26759
This theorem is referenced by:  lnperpex  26866
  Copyright terms: Public domain W3C validator