MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem5 Structured version   Visualization version   GIF version

Theorem opphllem5 26545
Description: Second part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 2-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
opphllem5.n 𝑁 = ((pInvG‘𝐺)‘𝑀)
opphllem5.a (𝜑𝐴𝑃)
opphllem5.c (𝜑𝐶𝑃)
opphllem5.r (𝜑𝑅𝐷)
opphllem5.s (𝜑𝑆𝐷)
opphllem5.m (𝜑𝑀𝑃)
opphllem5.o (𝜑𝐴𝑂𝐶)
opphllem5.p (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
opphllem5.q (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
opphllem5.u (𝜑𝑈𝑃)
opphllem5.v (𝜑𝑉𝑃)
opphllem5.1 (𝜑𝑈(𝐾𝑅)𝐴)
opphllem5.2 (𝜑𝑉(𝐾𝑆)𝐶)
Assertion
Ref Expression
opphllem5 (𝜑𝑈𝑂𝑉)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝑈   𝑡,𝐼   𝑡,𝐾   𝑡,𝑀   𝑡,𝑂   𝑡,𝑁   𝑡,𝑃   𝑡,𝑆   𝑡,𝑉   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑈(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑁(𝑎,𝑏)   𝑂(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem opphllem5
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 hpg.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 hpg.d . . . . . . 7 = (dist‘𝐺)
3 hpg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
4 opphl.l . . . . . . 7 𝐿 = (LineG‘𝐺)
5 opphl.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
6 opphl.d . . . . . . 7 (𝜑𝐷 ∈ ran 𝐿)
7 opphl.k . . . . . . 7 𝐾 = (hlG‘𝐺)
8 opphllem5.r . . . . . . 7 (𝜑𝑅𝐷)
9 opphllem5.a . . . . . . 7 (𝜑𝐴𝑃)
10 opphllem5.u . . . . . . 7 (𝜑𝑈𝑃)
11 opphllem5.p . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
121, 4, 3, 5, 6, 8tglnpt 26343 . . . . . . . . 9 (𝜑𝑅𝑃)
13 opphllem5.1 . . . . . . . . . 10 (𝜑𝑈(𝐾𝑅)𝐴)
141, 3, 7, 10, 9, 12, 5, 13hlne2 26400 . . . . . . . . 9 (𝜑𝐴𝑅)
151, 3, 4, 5, 9, 12, 14tglinecom 26429 . . . . . . . 8 (𝜑 → (𝐴𝐿𝑅) = (𝑅𝐿𝐴))
1611, 15breqtrd 5056 . . . . . . 7 (𝜑𝐷(⟂G‘𝐺)(𝑅𝐿𝐴))
171, 3, 7, 10, 9, 12, 5, 13hlcomd 26398 . . . . . . 7 (𝜑𝐴(𝐾𝑅)𝑈)
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 17hlperpnel 26519 . . . . . 6 (𝜑 → ¬ 𝑈𝐷)
1918ad3antrrr 729 . . . . 5 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → ¬ 𝑈𝐷)
20 opphllem5.s . . . . . . 7 (𝜑𝑆𝐷)
21 opphllem5.c . . . . . . 7 (𝜑𝐶𝑃)
22 opphllem5.v . . . . . . 7 (𝜑𝑉𝑃)
23 opphllem5.q . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
241, 4, 3, 5, 6, 20tglnpt 26343 . . . . . . . . 9 (𝜑𝑆𝑃)
25 opphllem5.2 . . . . . . . . . 10 (𝜑𝑉(𝐾𝑆)𝐶)
261, 3, 7, 22, 21, 24, 5, 25hlne2 26400 . . . . . . . . 9 (𝜑𝐶𝑆)
271, 3, 4, 5, 21, 24, 26tglinecom 26429 . . . . . . . 8 (𝜑 → (𝐶𝐿𝑆) = (𝑆𝐿𝐶))
2823, 27breqtrd 5056 . . . . . . 7 (𝜑𝐷(⟂G‘𝐺)(𝑆𝐿𝐶))
291, 3, 7, 22, 21, 24, 5, 25hlcomd 26398 . . . . . . 7 (𝜑𝐶(𝐾𝑆)𝑉)
301, 2, 3, 4, 5, 6, 7, 20, 21, 22, 28, 29hlperpnel 26519 . . . . . 6 (𝜑 → ¬ 𝑉𝐷)
3130ad3antrrr 729 . . . . 5 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → ¬ 𝑉𝐷)
32 simplr 768 . . . . . 6 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑡𝐷)
33 simpr 488 . . . . . . . 8 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅 = 𝑡) → 𝑅 = 𝑡)
34 eqid 2798 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
355ad4antr 731 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐺 ∈ TarskiG)
3621ad4antr 731 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐶𝑃)
3712ad4antr 731 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅𝑃)
385ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
396ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ ran 𝐿)
401, 4, 3, 38, 39, 32tglnpt 26343 . . . . . . . . . 10 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑡𝑃)
4140adantr 484 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡𝑃)
429ad4antr 731 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐴𝑃)
4324ad4antr 731 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑆𝑃)
44 simpllr 775 . . . . . . . . . . . 12 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 = 𝑆)
451, 3, 4, 5, 21, 24, 26tglinerflx2 26428 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (𝐶𝐿𝑆))
4645ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑆 ∈ (𝐶𝐿𝑆))
4744, 46eqeltrd 2890 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 ∈ (𝐶𝐿𝑆))
4847adantr 484 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅 ∈ (𝐶𝐿𝑆))
494, 5, 23perpln2 26505 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐿𝑆) ∈ ran 𝐿)
501, 2, 3, 4, 5, 6, 49, 23perpcom 26507 . . . . . . . . . . . 12 (𝜑 → (𝐶𝐿𝑆)(⟂G‘𝐺)𝐷)
5150ad4antr 731 . . . . . . . . . . 11 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐶𝐿𝑆)(⟂G‘𝐺)𝐷)
52 simpr 488 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅𝑡)
536ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐷 ∈ ran 𝐿)
548ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅𝐷)
55 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡𝐷)
561, 3, 4, 35, 37, 41, 52, 52, 53, 54, 55tglinethru 26430 . . . . . . . . . . 11 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐷 = (𝑅𝐿𝑡))
5751, 56breqtrd 5056 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐶𝐿𝑆)(⟂G‘𝐺)(𝑅𝐿𝑡))
581, 2, 3, 4, 35, 36, 43, 48, 41, 57perprag 26520 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → ⟨“𝐶𝑅𝑡”⟩ ∈ (∟G‘𝐺))
591, 3, 4, 5, 9, 12, 14tglinerflx2 26428 . . . . . . . . . . 11 (𝜑𝑅 ∈ (𝐴𝐿𝑅))
6059ad4antr 731 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅 ∈ (𝐴𝐿𝑅))
614, 5, 11perpln2 26505 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐿𝑅) ∈ ran 𝐿)
621, 2, 3, 4, 5, 6, 61, 11perpcom 26507 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐿𝑅)(⟂G‘𝐺)𝐷)
6362ad4antr 731 . . . . . . . . . . 11 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐴𝐿𝑅)(⟂G‘𝐺)𝐷)
6463, 56breqtrd 5056 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐴𝐿𝑅)(⟂G‘𝐺)(𝑅𝐿𝑡))
651, 2, 3, 4, 35, 42, 37, 60, 41, 64perprag 26520 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → ⟨“𝐴𝑅𝑡”⟩ ∈ (∟G‘𝐺))
66 simplr 768 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡 ∈ (𝐴𝐼𝐶))
671, 2, 3, 35, 42, 41, 36, 66tgbtwncom 26282 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡 ∈ (𝐶𝐼𝐴))
681, 2, 3, 4, 34, 35, 36, 37, 41, 42, 58, 65, 67ragflat2 26497 . . . . . . . 8 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅 = 𝑡)
6933, 68pm2.61dane 3074 . . . . . . 7 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 = 𝑡)
709ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
7110ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑈𝑃)
7222ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑉𝑃)
7312ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅𝑃)
7417ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝐴(𝐾𝑅)𝑈)
7521ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
7625ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑉(𝐾𝑆)𝐶)
7744fveq2d 6649 . . . . . . . . . . . . 13 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → (𝐾𝑅) = (𝐾𝑆))
7877breqd 5041 . . . . . . . . . . . 12 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → (𝑉(𝐾𝑅)𝐶𝑉(𝐾𝑆)𝐶))
7976, 78mpbird 260 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑉(𝐾𝑅)𝐶)
801, 3, 7, 72, 75, 73, 38, 79hlcomd 26398 . . . . . . . . . 10 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝐶(𝐾𝑅)𝑉)
81 simpr 488 . . . . . . . . . . . 12 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑡 ∈ (𝐴𝐼𝐶))
8269, 81eqeltrd 2890 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 ∈ (𝐴𝐼𝐶))
831, 2, 3, 38, 70, 73, 75, 82tgbtwncom 26282 . . . . . . . . . 10 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 ∈ (𝐶𝐼𝐴))
841, 3, 7, 75, 72, 70, 38, 73, 80, 83btwnhl 26408 . . . . . . . . 9 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 ∈ (𝑉𝐼𝐴))
851, 2, 3, 38, 72, 73, 70, 84tgbtwncom 26282 . . . . . . . 8 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 ∈ (𝐴𝐼𝑉))
861, 3, 7, 70, 71, 72, 38, 73, 74, 85btwnhl 26408 . . . . . . 7 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 ∈ (𝑈𝐼𝑉))
8769, 86eqeltrrd 2891 . . . . . 6 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑡 ∈ (𝑈𝐼𝑉))
88 rspe 3263 . . . . . 6 ((𝑡𝐷𝑡 ∈ (𝑈𝐼𝑉)) → ∃𝑡𝐷 𝑡 ∈ (𝑈𝐼𝑉))
8932, 87, 88syl2anc 587 . . . . 5 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → ∃𝑡𝐷 𝑡 ∈ (𝑈𝐼𝑉))
9019, 31, 89jca31 518 . . . 4 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → ((¬ 𝑈𝐷 ∧ ¬ 𝑉𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑈𝐼𝑉)))
91 hpg.o . . . . . 6 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
921, 2, 3, 91, 10, 22islnopp 26533 . . . . 5 (𝜑 → (𝑈𝑂𝑉 ↔ ((¬ 𝑈𝐷 ∧ ¬ 𝑉𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑈𝐼𝑉))))
9392ad3antrrr 729 . . . 4 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → (𝑈𝑂𝑉 ↔ ((¬ 𝑈𝐷 ∧ ¬ 𝑉𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑈𝐼𝑉))))
9490, 93mpbird 260 . . 3 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑈𝑂𝑉)
95 opphllem5.o . . . . . 6 (𝜑𝐴𝑂𝐶)
961, 2, 3, 91, 9, 21islnopp 26533 . . . . . 6 (𝜑 → (𝐴𝑂𝐶 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))))
9795, 96mpbid 235 . . . . 5 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶)))
9897simprd 499 . . . 4 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))
9998adantr 484 . . 3 ((𝜑𝑅 = 𝑆) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))
10094, 99r19.29a 3248 . 2 ((𝜑𝑅 = 𝑆) → 𝑈𝑂𝑉)
1016ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐷 ∈ ran 𝐿)
1025ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐺 ∈ TarskiG)
103 eqid 2798 . . . . 5 ((pInvG‘𝐺)‘𝑚) = ((pInvG‘𝐺)‘𝑚)
1049ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐴𝑃)
10521ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐶𝑃)
1068ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑅𝐷)
10720ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑆𝐷)
108 simpllr 775 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑚𝑃)
10995ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐴𝑂𝐶)
11011ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
11123ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
112 simpr 488 . . . . . 6 ((𝜑𝑅𝑆) → 𝑅𝑆)
113112ad3antrrr 729 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑅𝑆)
114 simpr 488 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
11510ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑈𝑃)
116 simplr 768 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅))
117116eqcomd 2804 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → (((pInvG‘𝐺)‘𝑚)‘𝑅) = 𝑆)
11822ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑉𝑃)
11913ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑈(𝐾𝑅)𝐴)
12025ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑉(𝐾𝑆)𝐶)
1211, 2, 3, 91, 4, 101, 102, 7, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120opphllem4 26544 . . . 4 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑈𝑂𝑉)
1226ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐷 ∈ ran 𝐿)
1235ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐺 ∈ TarskiG)
12422ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑉𝑃)
12510ad4antr 731 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑈𝑃)
12621ad4antr 731 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐶𝑃)
1279ad4antr 731 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐴𝑃)
12820ad4antr 731 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑆𝐷)
1298ad4antr 731 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑅𝐷)
130 simpllr 775 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑚𝑃)
13195ad4antr 731 . . . . . . 7 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐴𝑂𝐶)
1321, 2, 3, 91, 4, 122, 123, 127, 126, 131oppcom 26538 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐶𝑂𝐴)
13323ad4antr 731 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
13411ad4antr 731 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
135112necomd 3042 . . . . . . 7 ((𝜑𝑅𝑆) → 𝑆𝑅)
136135ad3antrrr 729 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑆𝑅)
137 simpr 488 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶))
13812ad4antr 731 . . . . . . 7 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑅𝑃)
139 simplr 768 . . . . . . . 8 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅))
140139eqcomd 2804 . . . . . . 7 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (((pInvG‘𝐺)‘𝑚)‘𝑅) = 𝑆)
1411, 2, 3, 4, 34, 123, 130, 103, 138, 140mircom 26457 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (((pInvG‘𝐺)‘𝑚)‘𝑆) = 𝑅)
14225ad4antr 731 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑉(𝐾𝑆)𝐶)
14313ad4antr 731 . . . . . 6 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑈(𝐾𝑅)𝐴)
1441, 2, 3, 91, 4, 122, 123, 7, 103, 126, 127, 128, 129, 130, 132, 133, 134, 136, 137, 124, 141, 125, 142, 143opphllem4 26544 . . . . 5 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑉𝑂𝑈)
1451, 2, 3, 91, 4, 122, 123, 124, 125, 144oppcom 26538 . . . 4 (((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑈𝑂𝑉)
146 eqid 2798 . . . . . 6 (≤G‘𝐺) = (≤G‘𝐺)
1471, 2, 3, 146, 5, 24, 21, 12, 9legtrid 26385 . . . . 5 (𝜑 → ((𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴) ∨ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)))
148147ad3antrrr 729 . . . 4 ((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) → ((𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴) ∨ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)))
149121, 145, 148mpjaodan 956 . . 3 ((((𝜑𝑅𝑆) ∧ 𝑚𝑃) ∧ 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅)) → 𝑈𝑂𝑉)
1505adantr 484 . . . 4 ((𝜑𝑅𝑆) → 𝐺 ∈ TarskiG)
15112adantr 484 . . . 4 ((𝜑𝑅𝑆) → 𝑅𝑃)
15224adantr 484 . . . 4 ((𝜑𝑅𝑆) → 𝑆𝑃)
1531, 2, 3, 91, 4, 6, 5, 9, 21, 95opptgdim2 26539 . . . . 5 (𝜑𝐺DimTarskiG≥2)
154153adantr 484 . . . 4 ((𝜑𝑅𝑆) → 𝐺DimTarskiG≥2)
1551, 2, 3, 4, 150, 34, 151, 152, 154midex 26531 . . 3 ((𝜑𝑅𝑆) → ∃𝑚𝑃 𝑆 = (((pInvG‘𝐺)‘𝑚)‘𝑅))
156149, 155r19.29a 3248 . 2 ((𝜑𝑅𝑆) → 𝑈𝑂𝑉)
157100, 156pm2.61dane 3074 1 (𝜑𝑈𝑂𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cdif 3878   class class class wbr 5030  {copab 5092  ran crn 5520  cfv 6324  (class class class)co 7135  2c2 11680  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  DimTarskiGcstrkgld 26228  Itvcitv 26230  LineGclng 26231  ≤Gcleg 26376  hlGchlg 26394  pInvGcmir 26446  ⟂Gcperpg 26489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkgld 26246  df-trkg 26247  df-cgrg 26305  df-leg 26377  df-hlg 26395  df-mir 26447  df-rag 26488  df-perpg 26490
This theorem is referenced by:  opphl  26548
  Copyright terms: Public domain W3C validator