Step | Hyp | Ref
| Expression |
1 | | colperpex.p |
. . 3
β’ π = (BaseβπΊ) |
2 | | colperpex.d |
. . 3
β’ β =
(distβπΊ) |
3 | | colperpex.i |
. . 3
β’ πΌ = (ItvβπΊ) |
4 | | colperpex.l |
. . 3
β’ πΏ = (LineGβπΊ) |
5 | | colperpex.g |
. . 3
β’ (π β πΊ β TarskiG) |
6 | | mideu.s |
. . 3
β’ π = (pInvGβπΊ) |
7 | | mideu.1 |
. . 3
β’ (π β π΄ β π) |
8 | | mideu.2 |
. . 3
β’ (π β π΅ β π) |
9 | | mideu.3 |
. . 3
β’ (π β πΊDimTarskiGβ₯2) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | midex 28421 |
. 2
β’ (π β βπ₯ β π π΅ = ((πβπ₯)βπ΄)) |
11 | 5 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ (π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄))) β πΊ β TarskiG) |
12 | | simplrl 774 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ (π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄))) β π₯ β π) |
13 | | simplrr 775 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ (π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄))) β π¦ β π) |
14 | 7 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ (π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄))) β π΄ β π) |
15 | 8 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ (π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄))) β π΅ β π) |
16 | | simprl 768 |
. . . . . . 7
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ (π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄))) β π΅ = ((πβπ₯)βπ΄)) |
17 | 16 | eqcomd 2737 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ (π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄))) β ((πβπ₯)βπ΄) = π΅) |
18 | | simprr 770 |
. . . . . . 7
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ (π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄))) β π΅ = ((πβπ¦)βπ΄)) |
19 | 18 | eqcomd 2737 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ (π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄))) β ((πβπ¦)βπ΄) = π΅) |
20 | 1, 2, 3, 4, 6, 11,
12, 13, 14, 15, 17, 19 | miduniq 28369 |
. . . . 5
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ (π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄))) β π₯ = π¦) |
21 | 20 | ex 412 |
. . . 4
β’ ((π β§ (π₯ β π β§ π¦ β π)) β ((π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄)) β π₯ = π¦)) |
22 | 21 | ralrimivva 3199 |
. . 3
β’ (π β βπ₯ β π βπ¦ β π ((π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄)) β π₯ = π¦)) |
23 | | fveq2 6891 |
. . . . . 6
β’ (π₯ = π¦ β (πβπ₯) = (πβπ¦)) |
24 | 23 | fveq1d 6893 |
. . . . 5
β’ (π₯ = π¦ β ((πβπ₯)βπ΄) = ((πβπ¦)βπ΄)) |
25 | 24 | eqeq2d 2742 |
. . . 4
β’ (π₯ = π¦ β (π΅ = ((πβπ₯)βπ΄) β π΅ = ((πβπ¦)βπ΄))) |
26 | 25 | rmo4 3726 |
. . 3
β’
(β*π₯ β
π π΅ = ((πβπ₯)βπ΄) β βπ₯ β π βπ¦ β π ((π΅ = ((πβπ₯)βπ΄) β§ π΅ = ((πβπ¦)βπ΄)) β π₯ = π¦)) |
27 | 22, 26 | sylibr 233 |
. 2
β’ (π β β*π₯ β π π΅ = ((πβπ₯)βπ΄)) |
28 | | reu5 3377 |
. 2
β’
(β!π₯ β
π π΅ = ((πβπ₯)βπ΄) β (βπ₯ β π π΅ = ((πβπ₯)βπ΄) β§ β*π₯ β π π΅ = ((πβπ₯)βπ΄))) |
29 | 10, 27, 28 | sylanbrc 582 |
1
β’ (π β β!π₯ β π π΅ = ((πβπ₯)βπ΄)) |