| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mideu | Structured version Visualization version GIF version | ||
| Description: Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
| colperpex.d | ⊢ − = (dist‘𝐺) |
| colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
| colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
| colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mideu.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mideu.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mideu.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mideu.3 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| Ref | Expression |
|---|---|
| mideu | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | colperpex.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | colperpex.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | colperpex.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | colperpex.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | colperpex.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | mideu.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 7 | mideu.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mideu.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | mideu.3 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | midex 28700 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
| 11 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐺 ∈ TarskiG) |
| 12 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑥 ∈ 𝑃) | |
| 13 | simplrr 777 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑦 ∈ 𝑃) | |
| 14 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐴 ∈ 𝑃) |
| 15 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 ∈ 𝑃) |
| 16 | simprl 770 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 = ((𝑆‘𝑥)‘𝐴)) | |
| 17 | 16 | eqcomd 2735 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → ((𝑆‘𝑥)‘𝐴) = 𝐵) |
| 18 | simprr 772 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 = ((𝑆‘𝑦)‘𝐴)) | |
| 19 | 18 | eqcomd 2735 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → ((𝑆‘𝑦)‘𝐴) = 𝐵) |
| 20 | 1, 2, 3, 4, 6, 11, 12, 13, 14, 15, 17, 19 | miduniq 28648 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑥 = 𝑦) |
| 21 | 20 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
| 22 | 21 | ralrimivva 3172 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
| 23 | fveq2 6826 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑆‘𝑥) = (𝑆‘𝑦)) | |
| 24 | 23 | fveq1d 6828 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑆‘𝑥)‘𝐴) = ((𝑆‘𝑦)‘𝐴)) |
| 25 | 24 | eqeq2d 2740 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ 𝐵 = ((𝑆‘𝑦)‘𝐴))) |
| 26 | 25 | rmo4 3692 | . . 3 ⊢ (∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
| 27 | 22, 26 | sylibr 234 | . 2 ⊢ (𝜑 → ∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
| 28 | reu5 3347 | . 2 ⊢ (∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ (∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ ∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴))) | |
| 29 | 10, 27, 28 | sylanbrc 583 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∃!wreu 3343 ∃*wrmo 3344 class class class wbr 5095 ‘cfv 6486 2c2 12201 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 DimTarskiG≥cstrkgld 28394 Itvcitv 28396 LineGclng 28397 pInvGcmir 28615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkgld 28415 df-trkg 28416 df-cgrg 28474 df-leg 28546 df-mir 28616 df-rag 28657 df-perpg 28659 |
| This theorem is referenced by: midf 28739 ismidb 28741 |
| Copyright terms: Public domain | W3C validator |