MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mideu Structured version   Visualization version   GIF version

Theorem mideu 27097
Description: Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideu.3 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
mideu (𝜑 → ∃!𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥

Proof of Theorem mideu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . 3 𝑃 = (Base‘𝐺)
2 colperpex.d . . 3 = (dist‘𝐺)
3 colperpex.i . . 3 𝐼 = (Itv‘𝐺)
4 colperpex.l . . 3 𝐿 = (LineG‘𝐺)
5 colperpex.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 mideu.s . . 3 𝑆 = (pInvG‘𝐺)
7 mideu.1 . . 3 (𝜑𝐴𝑃)
8 mideu.2 . . 3 (𝜑𝐵𝑃)
9 mideu.3 . . 3 (𝜑𝐺DimTarskiG≥2)
101, 2, 3, 4, 5, 6, 7, 8, 9midex 27096 . 2 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
115ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝐺 ∈ TarskiG)
12 simplrl 774 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝑥𝑃)
13 simplrr 775 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝑦𝑃)
147ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝐴𝑃)
158ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝐵𝑃)
16 simprl 768 . . . . . . 7 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝐵 = ((𝑆𝑥)‘𝐴))
1716eqcomd 2746 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → ((𝑆𝑥)‘𝐴) = 𝐵)
18 simprr 770 . . . . . . 7 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝐵 = ((𝑆𝑦)‘𝐴))
1918eqcomd 2746 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → ((𝑆𝑦)‘𝐴) = 𝐵)
201, 2, 3, 4, 6, 11, 12, 13, 14, 15, 17, 19miduniq 27044 . . . . 5 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝑥 = 𝑦)
2120ex 413 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴)) → 𝑥 = 𝑦))
2221ralrimivva 3117 . . 3 (𝜑 → ∀𝑥𝑃𝑦𝑃 ((𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴)) → 𝑥 = 𝑦))
23 fveq2 6771 . . . . . 6 (𝑥 = 𝑦 → (𝑆𝑥) = (𝑆𝑦))
2423fveq1d 6773 . . . . 5 (𝑥 = 𝑦 → ((𝑆𝑥)‘𝐴) = ((𝑆𝑦)‘𝐴))
2524eqeq2d 2751 . . . 4 (𝑥 = 𝑦 → (𝐵 = ((𝑆𝑥)‘𝐴) ↔ 𝐵 = ((𝑆𝑦)‘𝐴)))
2625rmo4 3669 . . 3 (∃*𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴) ↔ ∀𝑥𝑃𝑦𝑃 ((𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴)) → 𝑥 = 𝑦))
2722, 26sylibr 233 . 2 (𝜑 → ∃*𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
28 reu5 3360 . 2 (∃!𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴) ↔ (∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴) ∧ ∃*𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴)))
2910, 27, 28sylanbrc 583 1 (𝜑 → ∃!𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067  ∃!wreu 3068  ∃*wrmo 3069   class class class wbr 5079  cfv 6432  2c2 12028  Basecbs 16910  distcds 16969  TarskiGcstrkg 26786  DimTarskiGcstrkgld 26790  Itvcitv 26792  LineGclng 26793  pInvGcmir 27011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-oadd 8292  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382  df-hash 14043  df-word 14216  df-concat 14272  df-s1 14299  df-s2 14559  df-s3 14560  df-trkgc 26807  df-trkgb 26808  df-trkgcb 26809  df-trkgld 26811  df-trkg 26812  df-cgrg 26870  df-leg 26942  df-mir 27012  df-rag 27053  df-perpg 27055
This theorem is referenced by:  midf  27135  ismidb  27137
  Copyright terms: Public domain W3C validator