MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mideu Structured version   Visualization version   GIF version

Theorem mideu 25979
Description: Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideu.3 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
mideu (𝜑 → ∃!𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥

Proof of Theorem mideu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . 3 𝑃 = (Base‘𝐺)
2 colperpex.d . . 3 = (dist‘𝐺)
3 colperpex.i . . 3 𝐼 = (Itv‘𝐺)
4 colperpex.l . . 3 𝐿 = (LineG‘𝐺)
5 colperpex.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 mideu.s . . 3 𝑆 = (pInvG‘𝐺)
7 mideu.1 . . 3 (𝜑𝐴𝑃)
8 mideu.2 . . 3 (𝜑𝐵𝑃)
9 mideu.3 . . 3 (𝜑𝐺DimTarskiG≥2)
101, 2, 3, 4, 5, 6, 7, 8, 9midex 25978 . 2 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
115ad2antrr 718 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝐺 ∈ TarskiG)
12 simplrl 796 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝑥𝑃)
13 simplrr 797 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝑦𝑃)
147ad2antrr 718 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝐴𝑃)
158ad2antrr 718 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝐵𝑃)
16 simprl 788 . . . . . . 7 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝐵 = ((𝑆𝑥)‘𝐴))
1716eqcomd 2803 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → ((𝑆𝑥)‘𝐴) = 𝐵)
18 simprr 790 . . . . . . 7 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝐵 = ((𝑆𝑦)‘𝐴))
1918eqcomd 2803 . . . . . 6 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → ((𝑆𝑦)‘𝐴) = 𝐵)
201, 2, 3, 4, 6, 11, 12, 13, 14, 15, 17, 19miduniq 25929 . . . . 5 (((𝜑 ∧ (𝑥𝑃𝑦𝑃)) ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴))) → 𝑥 = 𝑦)
2120ex 402 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴)) → 𝑥 = 𝑦))
2221ralrimivva 3150 . . 3 (𝜑 → ∀𝑥𝑃𝑦𝑃 ((𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴)) → 𝑥 = 𝑦))
23 fveq2 6409 . . . . . 6 (𝑥 = 𝑦 → (𝑆𝑥) = (𝑆𝑦))
2423fveq1d 6411 . . . . 5 (𝑥 = 𝑦 → ((𝑆𝑥)‘𝐴) = ((𝑆𝑦)‘𝐴))
2524eqeq2d 2807 . . . 4 (𝑥 = 𝑦 → (𝐵 = ((𝑆𝑥)‘𝐴) ↔ 𝐵 = ((𝑆𝑦)‘𝐴)))
2625rmo4 3593 . . 3 (∃*𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴) ↔ ∀𝑥𝑃𝑦𝑃 ((𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝐵 = ((𝑆𝑦)‘𝐴)) → 𝑥 = 𝑦))
2722, 26sylibr 226 . 2 (𝜑 → ∃*𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
28 reu5 3340 . 2 (∃!𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴) ↔ (∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴) ∧ ∃*𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴)))
2910, 27, 28sylanbrc 579 1 (𝜑 → ∃!𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3087  wrex 3088  ∃!wreu 3089  ∃*wrmo 3090   class class class wbr 4841  cfv 6099  2c2 11364  Basecbs 16181  distcds 16273  TarskiGcstrkg 25678  DimTarskiGcstrkgld 25682  Itvcitv 25684  LineGclng 25685  pInvGcmir 25896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-card 9049  df-cda 9276  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-n0 11577  df-xnn0 11649  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-hash 13367  df-word 13531  df-concat 13587  df-s1 13612  df-s2 13930  df-s3 13931  df-trkgc 25696  df-trkgb 25697  df-trkgcb 25698  df-trkgld 25700  df-trkg 25701  df-cgrg 25755  df-leg 25827  df-mir 25897  df-rag 25938  df-perpg 25940
This theorem is referenced by:  midf  26017  ismidb  26019
  Copyright terms: Public domain W3C validator