| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mideu | Structured version Visualization version GIF version | ||
| Description: Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
| colperpex.d | ⊢ − = (dist‘𝐺) |
| colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
| colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
| colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mideu.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mideu.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mideu.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mideu.3 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| Ref | Expression |
|---|---|
| mideu | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | colperpex.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | colperpex.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | colperpex.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | colperpex.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | colperpex.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | mideu.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 7 | mideu.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mideu.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | mideu.3 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | midex 28716 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
| 11 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐺 ∈ TarskiG) |
| 12 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑥 ∈ 𝑃) | |
| 13 | simplrr 777 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑦 ∈ 𝑃) | |
| 14 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐴 ∈ 𝑃) |
| 15 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 ∈ 𝑃) |
| 16 | simprl 770 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 = ((𝑆‘𝑥)‘𝐴)) | |
| 17 | 16 | eqcomd 2741 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → ((𝑆‘𝑥)‘𝐴) = 𝐵) |
| 18 | simprr 772 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 = ((𝑆‘𝑦)‘𝐴)) | |
| 19 | 18 | eqcomd 2741 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → ((𝑆‘𝑦)‘𝐴) = 𝐵) |
| 20 | 1, 2, 3, 4, 6, 11, 12, 13, 14, 15, 17, 19 | miduniq 28664 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑥 = 𝑦) |
| 21 | 20 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
| 22 | 21 | ralrimivva 3187 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
| 23 | fveq2 6876 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑆‘𝑥) = (𝑆‘𝑦)) | |
| 24 | 23 | fveq1d 6878 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑆‘𝑥)‘𝐴) = ((𝑆‘𝑦)‘𝐴)) |
| 25 | 24 | eqeq2d 2746 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ 𝐵 = ((𝑆‘𝑦)‘𝐴))) |
| 26 | 25 | rmo4 3713 | . . 3 ⊢ (∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
| 27 | 22, 26 | sylibr 234 | . 2 ⊢ (𝜑 → ∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
| 28 | reu5 3361 | . 2 ⊢ (∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ (∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ ∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴))) | |
| 29 | 10, 27, 28 | sylanbrc 583 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ∃!wreu 3357 ∃*wrmo 3358 class class class wbr 5119 ‘cfv 6531 2c2 12295 Basecbs 17228 distcds 17280 TarskiGcstrkg 28406 DimTarskiG≥cstrkgld 28410 Itvcitv 28412 LineGclng 28413 pInvGcmir 28631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkgld 28431 df-trkg 28432 df-cgrg 28490 df-leg 28562 df-mir 28632 df-rag 28673 df-perpg 28675 |
| This theorem is referenced by: midf 28755 ismidb 28757 |
| Copyright terms: Public domain | W3C validator |