![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mideu | Structured version Visualization version GIF version |
Description: Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.) |
Ref | Expression |
---|---|
colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
colperpex.d | ⊢ − = (dist‘𝐺) |
colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mideu.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mideu.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mideu.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mideu.3 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
Ref | Expression |
---|---|
mideu | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colperpex.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | colperpex.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | colperpex.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | colperpex.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | colperpex.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | mideu.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
7 | mideu.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mideu.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | mideu.3 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | midex 28535 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
11 | 5 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐺 ∈ TarskiG) |
12 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑥 ∈ 𝑃) | |
13 | simplrr 777 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑦 ∈ 𝑃) | |
14 | 7 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐴 ∈ 𝑃) |
15 | 8 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 ∈ 𝑃) |
16 | simprl 770 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 = ((𝑆‘𝑥)‘𝐴)) | |
17 | 16 | eqcomd 2734 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → ((𝑆‘𝑥)‘𝐴) = 𝐵) |
18 | simprr 772 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 = ((𝑆‘𝑦)‘𝐴)) | |
19 | 18 | eqcomd 2734 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → ((𝑆‘𝑦)‘𝐴) = 𝐵) |
20 | 1, 2, 3, 4, 6, 11, 12, 13, 14, 15, 17, 19 | miduniq 28483 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑥 = 𝑦) |
21 | 20 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
22 | 21 | ralrimivva 3196 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
23 | fveq2 6892 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑆‘𝑥) = (𝑆‘𝑦)) | |
24 | 23 | fveq1d 6894 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑆‘𝑥)‘𝐴) = ((𝑆‘𝑦)‘𝐴)) |
25 | 24 | eqeq2d 2739 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ 𝐵 = ((𝑆‘𝑦)‘𝐴))) |
26 | 25 | rmo4 3724 | . . 3 ⊢ (∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
27 | 22, 26 | sylibr 233 | . 2 ⊢ (𝜑 → ∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
28 | reu5 3374 | . 2 ⊢ (∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ (∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ ∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴))) | |
29 | 10, 27, 28 | sylanbrc 582 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ∃wrex 3066 ∃!wreu 3370 ∃*wrmo 3371 class class class wbr 5143 ‘cfv 6543 2c2 12292 Basecbs 17174 distcds 17236 TarskiGcstrkg 28225 DimTarskiG≥cstrkgld 28229 Itvcitv 28231 LineGclng 28232 pInvGcmir 28450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-oadd 8485 df-er 8719 df-map 8841 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-fz 13512 df-fzo 13655 df-hash 14317 df-word 14492 df-concat 14548 df-s1 14573 df-s2 14826 df-s3 14827 df-trkgc 28246 df-trkgb 28247 df-trkgcb 28248 df-trkgld 28250 df-trkg 28251 df-cgrg 28309 df-leg 28381 df-mir 28451 df-rag 28492 df-perpg 28494 |
This theorem is referenced by: midf 28574 ismidb 28576 |
Copyright terms: Public domain | W3C validator |