Proof of Theorem oppcom
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oppcom.o | . . . . . 6
⊢ (𝜑 → 𝐴𝑂𝐵) | 
| 2 |  | hpg.p | . . . . . . 7
⊢ 𝑃 = (Base‘𝐺) | 
| 3 |  | hpg.d | . . . . . . 7
⊢  − =
(dist‘𝐺) | 
| 4 |  | hpg.i | . . . . . . 7
⊢ 𝐼 = (Itv‘𝐺) | 
| 5 |  | hpg.o | . . . . . . 7
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | 
| 6 |  | oppcom.a | . . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| 7 |  | oppcom.b | . . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| 8 | 2, 3, 4, 5, 6, 7 | islnopp 28747 | . . . . . 6
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) | 
| 9 | 1, 8 | mpbid 232 | . . . . 5
⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) | 
| 10 | 9 | simpld 494 | . . . 4
⊢ (𝜑 → (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) | 
| 11 | 10 | simprd 495 | . . 3
⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | 
| 12 | 10 | simpld 494 | . . 3
⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | 
| 13 | 9 | simprd 495 | . . . 4
⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) | 
| 14 |  | opphl.g | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| 15 | 14 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG) | 
| 16 | 6 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ 𝑃) | 
| 17 |  | opphl.l | . . . . . . . . 9
⊢ 𝐿 = (LineG‘𝐺) | 
| 18 | 14 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝐺 ∈ TarskiG) | 
| 19 |  | opphl.d | . . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | 
| 20 | 19 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝐷 ∈ ran 𝐿) | 
| 21 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ 𝐷) | 
| 22 | 2, 17, 4, 18, 20, 21 | tglnpt 28557 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ 𝑃) | 
| 23 | 22 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ 𝑃) | 
| 24 | 7 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐵 ∈ 𝑃) | 
| 25 |  | simpr 484 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ (𝐴𝐼𝐵)) | 
| 26 | 2, 3, 4, 15, 16, 23, 24, 25 | tgbtwncom 28496 | . . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ (𝐵𝐼𝐴)) | 
| 27 | 14 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝐺 ∈ TarskiG) | 
| 28 | 7 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝐵 ∈ 𝑃) | 
| 29 | 22 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝑡 ∈ 𝑃) | 
| 30 | 6 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝐴 ∈ 𝑃) | 
| 31 |  | simpr 484 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝑡 ∈ (𝐵𝐼𝐴)) | 
| 32 | 2, 3, 4, 27, 28, 29, 30, 31 | tgbtwncom 28496 | . . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝑡 ∈ (𝐴𝐼𝐵)) | 
| 33 | 26, 32 | impbida 801 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑡 ∈ (𝐵𝐼𝐴))) | 
| 34 | 33 | rexbidva 3177 | . . . 4
⊢ (𝜑 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐴))) | 
| 35 | 13, 34 | mpbid 232 | . . 3
⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐴)) | 
| 36 | 11, 12, 35 | jca31 514 | . 2
⊢ (𝜑 → ((¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐴))) | 
| 37 | 2, 3, 4, 5, 7, 6 | islnopp 28747 | . 2
⊢ (𝜑 → (𝐵𝑂𝐴 ↔ ((¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐴)))) | 
| 38 | 36, 37 | mpbird 257 | 1
⊢ (𝜑 → 𝐵𝑂𝐴) |