MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcom Structured version   Visualization version   GIF version

Theorem oppcom 26835
Description: Commutativity rule for "opposite" Theorem 9.2 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
oppcom.a (𝜑𝐴𝑃)
oppcom.b (𝜑𝐵𝑃)
oppcom.o (𝜑𝐴𝑂𝐵)
Assertion
Ref Expression
oppcom (𝜑𝐵𝑂𝐴)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑂   𝑡,𝑃   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem oppcom
StepHypRef Expression
1 oppcom.o . . . . . 6 (𝜑𝐴𝑂𝐵)
2 hpg.p . . . . . . 7 𝑃 = (Base‘𝐺)
3 hpg.d . . . . . . 7 = (dist‘𝐺)
4 hpg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
5 hpg.o . . . . . . 7 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
6 oppcom.a . . . . . . 7 (𝜑𝐴𝑃)
7 oppcom.b . . . . . . 7 (𝜑𝐵𝑃)
82, 3, 4, 5, 6, 7islnopp 26830 . . . . . 6 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
91, 8mpbid 235 . . . . 5 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)))
109simpld 498 . . . 4 (𝜑 → (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷))
1110simprd 499 . . 3 (𝜑 → ¬ 𝐵𝐷)
1210simpld 498 . . 3 (𝜑 → ¬ 𝐴𝐷)
139simprd 499 . . . 4 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
14 opphl.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
1514ad2antrr 726 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
166ad2antrr 726 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
17 opphl.l . . . . . . . . 9 𝐿 = (LineG‘𝐺)
1814adantr 484 . . . . . . . . 9 ((𝜑𝑡𝐷) → 𝐺 ∈ TarskiG)
19 opphl.d . . . . . . . . . 10 (𝜑𝐷 ∈ ran 𝐿)
2019adantr 484 . . . . . . . . 9 ((𝜑𝑡𝐷) → 𝐷 ∈ ran 𝐿)
21 simpr 488 . . . . . . . . 9 ((𝜑𝑡𝐷) → 𝑡𝐷)
222, 17, 4, 18, 20, 21tglnpt 26640 . . . . . . . 8 ((𝜑𝑡𝐷) → 𝑡𝑃)
2322adantr 484 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡𝑃)
247ad2antrr 726 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
25 simpr 488 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ (𝐴𝐼𝐵))
262, 3, 4, 15, 16, 23, 24, 25tgbtwncom 26579 . . . . . 6 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ (𝐵𝐼𝐴))
2714ad2antrr 726 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝐺 ∈ TarskiG)
287ad2antrr 726 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝐵𝑃)
2922adantr 484 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝑡𝑃)
306ad2antrr 726 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝐴𝑃)
31 simpr 488 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝑡 ∈ (𝐵𝐼𝐴))
322, 3, 4, 27, 28, 29, 30, 31tgbtwncom 26579 . . . . . 6 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐵𝐼𝐴)) → 𝑡 ∈ (𝐴𝐼𝐵))
3326, 32impbida 801 . . . . 5 ((𝜑𝑡𝐷) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑡 ∈ (𝐵𝐼𝐴)))
3433rexbidva 3215 . . . 4 (𝜑 → (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐴)))
3513, 34mpbid 235 . . 3 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐴))
3611, 12, 35jca31 518 . 2 (𝜑 → ((¬ 𝐵𝐷 ∧ ¬ 𝐴𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐴)))
372, 3, 4, 5, 7, 6islnopp 26830 . 2 (𝜑 → (𝐵𝑂𝐴 ↔ ((¬ 𝐵𝐷 ∧ ¬ 𝐴𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐴))))
3836, 37mpbird 260 1 (𝜑𝐵𝑂𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wrex 3062  cdif 3863   class class class wbr 5053  {copab 5115  ran crn 5552  cfv 6380  (class class class)co 7213  Basecbs 16760  distcds 16811  TarskiGcstrkg 26521  Itvcitv 26527  LineGclng 26528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-cnv 5559  df-dm 5561  df-rn 5562  df-iota 6338  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-trkgc 26539  df-trkgb 26540  df-trkgcb 26541  df-trkg 26544
This theorem is referenced by:  opphllem2  26839  opphllem4  26841  opphllem5  26842  opphllem6  26843  lnperpex  26894
  Copyright terms: Public domain W3C validator