Step | Hyp | Ref
| Expression |
1 | | hpg.p |
. . . 4
β’ π = (BaseβπΊ) |
2 | | hpg.d |
. . . 4
β’ β =
(distβπΊ) |
3 | | hpg.i |
. . . 4
β’ πΌ = (ItvβπΊ) |
4 | | opphl.l |
. . . 4
β’ πΏ = (LineGβπΊ) |
5 | | eqid 2731 |
. . . 4
β’
(pInvGβπΊ) =
(pInvGβπΊ) |
6 | | opphl.g |
. . . . 5
β’ (π β πΊ β TarskiG) |
7 | 6 | adantr 480 |
. . . 4
β’ ((π β§ π
= π) β πΊ β TarskiG) |
8 | | opphllem5.n |
. . . 4
β’ π = ((pInvGβπΊ)βπ) |
9 | | opphl.k |
. . . 4
β’ πΎ = (hlGβπΊ) |
10 | | opphllem5.m |
. . . . 5
β’ (π β π β π) |
11 | 10 | adantr 480 |
. . . 4
β’ ((π β§ π
= π) β π β π) |
12 | | opphllem5.a |
. . . . 5
β’ (π β π΄ β π) |
13 | 12 | adantr 480 |
. . . 4
β’ ((π β§ π
= π) β π΄ β π) |
14 | | opphllem5.c |
. . . . 5
β’ (π β πΆ β π) |
15 | 14 | adantr 480 |
. . . 4
β’ ((π β§ π
= π) β πΆ β π) |
16 | | opphllem5.u |
. . . . 5
β’ (π β π β π) |
17 | 16 | adantr 480 |
. . . 4
β’ ((π β§ π
= π) β π β π) |
18 | | opphl.d |
. . . . . . . 8
β’ (π β π· β ran πΏ) |
19 | | opphllem5.r |
. . . . . . . 8
β’ (π β π
β π·) |
20 | 1, 4, 3, 6, 18, 19 | tglnpt 28064 |
. . . . . . 7
β’ (π β π
β π) |
21 | | opphllem5.p |
. . . . . . . 8
β’ (π β π·(βGβπΊ)(π΄πΏπ
)) |
22 | 4, 6, 21 | perpln2 28226 |
. . . . . . 7
β’ (π β (π΄πΏπ
) β ran πΏ) |
23 | 1, 3, 4, 6, 12, 20, 22 | tglnne 28143 |
. . . . . 6
β’ (π β π΄ β π
) |
24 | 23 | adantr 480 |
. . . . 5
β’ ((π β§ π
= π) β π΄ β π
) |
25 | | opphllem6.v |
. . . . . . . 8
β’ (π β (πβπ
) = π) |
26 | 25 | adantr 480 |
. . . . . . 7
β’ ((π β§ π
= π) β (πβπ
) = π) |
27 | | simpr 484 |
. . . . . . 7
β’ ((π β§ π
= π) β π
= π) |
28 | 26, 27 | eqtr4d 2774 |
. . . . . 6
β’ ((π β§ π
= π) β (πβπ
) = π
) |
29 | 1, 2, 3, 4, 5, 6, 10, 8, 20 | mirinv 28181 |
. . . . . . 7
β’ (π β ((πβπ
) = π
β π = π
)) |
30 | 29 | adantr 480 |
. . . . . 6
β’ ((π β§ π
= π) β ((πβπ
) = π
β π = π
)) |
31 | 28, 30 | mpbid 231 |
. . . . 5
β’ ((π β§ π
= π) β π = π
) |
32 | 24, 31 | neeqtrrd 3014 |
. . . 4
β’ ((π β§ π
= π) β π΄ β π) |
33 | | opphllem5.s |
. . . . . . . 8
β’ (π β π β π·) |
34 | 1, 4, 3, 6, 18, 33 | tglnpt 28064 |
. . . . . . 7
β’ (π β π β π) |
35 | | opphllem5.q |
. . . . . . . 8
β’ (π β π·(βGβπΊ)(πΆπΏπ)) |
36 | 4, 6, 35 | perpln2 28226 |
. . . . . . 7
β’ (π β (πΆπΏπ) β ran πΏ) |
37 | 1, 3, 4, 6, 14, 34, 36 | tglnne 28143 |
. . . . . 6
β’ (π β πΆ β π) |
38 | 37 | adantr 480 |
. . . . 5
β’ ((π β§ π
= π) β πΆ β π) |
39 | 31, 27 | eqtrd 2771 |
. . . . 5
β’ ((π β§ π
= π) β π = π) |
40 | 38, 39 | neeqtrrd 3014 |
. . . 4
β’ ((π β§ π
= π) β πΆ β π) |
41 | | simpr 484 |
. . . . . . . 8
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
= π‘) β π
= π‘) |
42 | 6 | ad4antr 729 |
. . . . . . . . 9
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β πΊ β TarskiG) |
43 | 14 | ad4antr 729 |
. . . . . . . . 9
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β πΆ β π) |
44 | 20 | ad4antr 729 |
. . . . . . . . 9
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π
β π) |
45 | 6 | ad3antrrr 727 |
. . . . . . . . . . 11
β’ ((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β πΊ β TarskiG) |
46 | 18 | ad3antrrr 727 |
. . . . . . . . . . 11
β’ ((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β π· β ran πΏ) |
47 | | simplr 766 |
. . . . . . . . . . 11
β’ ((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β π‘ β π·) |
48 | 1, 4, 3, 45, 46, 47 | tglnpt 28064 |
. . . . . . . . . 10
β’ ((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β π‘ β π) |
49 | 48 | adantr 480 |
. . . . . . . . 9
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π‘ β π) |
50 | 12 | ad4antr 729 |
. . . . . . . . 9
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π΄ β π) |
51 | 34 | ad4antr 729 |
. . . . . . . . . 10
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π β π) |
52 | | simpllr 773 |
. . . . . . . . . . . 12
β’ ((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β π
= π) |
53 | 1, 3, 4, 6, 14, 34, 37 | tglinerflx2 28149 |
. . . . . . . . . . . . 13
β’ (π β π β (πΆπΏπ)) |
54 | 53 | ad3antrrr 727 |
. . . . . . . . . . . 12
β’ ((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β π β (πΆπΏπ)) |
55 | 52, 54 | eqeltrd 2832 |
. . . . . . . . . . 11
β’ ((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β π
β (πΆπΏπ)) |
56 | 55 | adantr 480 |
. . . . . . . . . 10
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π
β (πΆπΏπ)) |
57 | 1, 2, 3, 4, 6, 18,
36, 35 | perpcom 28228 |
. . . . . . . . . . . 12
β’ (π β (πΆπΏπ)(βGβπΊ)π·) |
58 | 57 | ad4antr 729 |
. . . . . . . . . . 11
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β (πΆπΏπ)(βGβπΊ)π·) |
59 | | simpr 484 |
. . . . . . . . . . . 12
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π
β π‘) |
60 | 18 | ad4antr 729 |
. . . . . . . . . . . 12
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π· β ran πΏ) |
61 | 19 | ad4antr 729 |
. . . . . . . . . . . 12
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π
β π·) |
62 | | simpllr 773 |
. . . . . . . . . . . 12
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π‘ β π·) |
63 | 1, 3, 4, 42, 44, 49, 59, 59, 60, 61, 62 | tglinethru 28151 |
. . . . . . . . . . 11
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π· = (π
πΏπ‘)) |
64 | 58, 63 | breqtrd 5175 |
. . . . . . . . . 10
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β (πΆπΏπ)(βGβπΊ)(π
πΏπ‘)) |
65 | 1, 2, 3, 4, 42, 43, 51, 56, 49, 64 | perprag 28241 |
. . . . . . . . 9
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β β¨βπΆπ
π‘ββ© β (βGβπΊ)) |
66 | 1, 3, 4, 6, 12, 20, 23 | tglinerflx2 28149 |
. . . . . . . . . . 11
β’ (π β π
β (π΄πΏπ
)) |
67 | 66 | ad4antr 729 |
. . . . . . . . . 10
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π
β (π΄πΏπ
)) |
68 | 1, 2, 3, 4, 6, 18,
22, 21 | perpcom 28228 |
. . . . . . . . . . . 12
β’ (π β (π΄πΏπ
)(βGβπΊ)π·) |
69 | 68 | ad4antr 729 |
. . . . . . . . . . 11
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β (π΄πΏπ
)(βGβπΊ)π·) |
70 | 69, 63 | breqtrd 5175 |
. . . . . . . . . 10
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β (π΄πΏπ
)(βGβπΊ)(π
πΏπ‘)) |
71 | 1, 2, 3, 4, 42, 50, 44, 67, 49, 70 | perprag 28241 |
. . . . . . . . 9
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β β¨βπ΄π
π‘ββ© β (βGβπΊ)) |
72 | | simplr 766 |
. . . . . . . . . 10
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π‘ β (π΄πΌπΆ)) |
73 | 1, 2, 3, 42, 50, 49, 43, 72 | tgbtwncom 28003 |
. . . . . . . . 9
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π‘ β (πΆπΌπ΄)) |
74 | 1, 2, 3, 4, 5, 42,
43, 44, 49, 50, 65, 71, 73 | ragflat2 28218 |
. . . . . . . 8
β’
(((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β§ π
β π‘) β π
= π‘) |
75 | 41, 74 | pm2.61dane 3028 |
. . . . . . 7
β’ ((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β π
= π‘) |
76 | | simpr 484 |
. . . . . . 7
β’ ((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β π‘ β (π΄πΌπΆ)) |
77 | 75, 76 | eqeltrd 2832 |
. . . . . 6
β’ ((((π β§ π
= π) β§ π‘ β π·) β§ π‘ β (π΄πΌπΆ)) β π
β (π΄πΌπΆ)) |
78 | | opphllem5.o |
. . . . . . . . 9
β’ (π β π΄ππΆ) |
79 | | hpg.o |
. . . . . . . . . 10
β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} |
80 | 1, 2, 3, 79, 12, 14 | islnopp 28254 |
. . . . . . . . 9
β’ (π β (π΄ππΆ β ((Β¬ π΄ β π· β§ Β¬ πΆ β π·) β§ βπ‘ β π· π‘ β (π΄πΌπΆ)))) |
81 | 78, 80 | mpbid 231 |
. . . . . . . 8
β’ (π β ((Β¬ π΄ β π· β§ Β¬ πΆ β π·) β§ βπ‘ β π· π‘ β (π΄πΌπΆ))) |
82 | 81 | simprd 495 |
. . . . . . 7
β’ (π β βπ‘ β π· π‘ β (π΄πΌπΆ)) |
83 | 82 | adantr 480 |
. . . . . 6
β’ ((π β§ π
= π) β βπ‘ β π· π‘ β (π΄πΌπΆ)) |
84 | 77, 83 | r19.29a 3161 |
. . . . 5
β’ ((π β§ π
= π) β π
β (π΄πΌπΆ)) |
85 | 31, 84 | eqeltrd 2832 |
. . . 4
β’ ((π β§ π
= π) β π β (π΄πΌπΆ)) |
86 | 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 32, 40, 85 | mirbtwnhl 28195 |
. . 3
β’ ((π β§ π
= π) β (π(πΎβπ)π΄ β (πβπ)(πΎβπ)πΆ)) |
87 | 31 | fveq2d 6896 |
. . . 4
β’ ((π β§ π
= π) β (πΎβπ) = (πΎβπ
)) |
88 | 87 | breqd 5160 |
. . 3
β’ ((π β§ π
= π) β (π(πΎβπ)π΄ β π(πΎβπ
)π΄)) |
89 | 39 | fveq2d 6896 |
. . . 4
β’ ((π β§ π
= π) β (πΎβπ) = (πΎβπ)) |
90 | 89 | breqd 5160 |
. . 3
β’ ((π β§ π
= π) β ((πβπ)(πΎβπ)πΆ β (πβπ)(πΎβπ)πΆ)) |
91 | 86, 88, 90 | 3bitr3d 308 |
. 2
β’ ((π β§ π
= π) β (π(πΎβπ
)π΄ β (πβπ)(πΎβπ)πΆ)) |
92 | 18 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β π· β ran πΏ) |
93 | 6 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β πΊ β TarskiG) |
94 | 12 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β π΄ β π) |
95 | 14 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β πΆ β π) |
96 | 19 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β π
β π·) |
97 | 33 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β π β π·) |
98 | 10 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β π β π) |
99 | 78 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β π΄ππΆ) |
100 | 21 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β π·(βGβπΊ)(π΄πΏπ
)) |
101 | 35 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β π·(βGβπΊ)(πΆπΏπ)) |
102 | | simplr 766 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β π
β π) |
103 | | simpr 484 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β (π β πΆ)(β€GβπΊ)(π
β π΄)) |
104 | 16 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β π β π) |
105 | 25 | ad2antrr 723 |
. . . 4
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β (πβπ
) = π) |
106 | 1, 2, 3, 79, 4, 92, 93, 9, 8, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105 | opphllem3 28264 |
. . 3
β’ (((π β§ π
β π) β§ (π β πΆ)(β€GβπΊ)(π
β π΄)) β (π(πΎβπ
)π΄ β (πβπ)(πΎβπ)πΆ)) |
107 | 18 | ad2antrr 723 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π· β ran πΏ) |
108 | 6 | ad2antrr 723 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β πΊ β TarskiG) |
109 | 14 | ad2antrr 723 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β πΆ β π) |
110 | 12 | ad2antrr 723 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π΄ β π) |
111 | 33 | ad2antrr 723 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π β π·) |
112 | 19 | ad2antrr 723 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π
β π·) |
113 | 10 | ad2antrr 723 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π β π) |
114 | 78 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π΄ππΆ) |
115 | 1, 2, 3, 79, 4, 107, 108, 110, 109, 114 | oppcom 28259 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β πΆππ΄) |
116 | 35 | ad2antrr 723 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π·(βGβπΊ)(πΆπΏπ)) |
117 | 21 | ad2antrr 723 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π·(βGβπΊ)(π΄πΏπ
)) |
118 | | simpr 484 |
. . . . . . 7
β’ ((π β§ π
β π) β π
β π) |
119 | 118 | necomd 2995 |
. . . . . 6
β’ ((π β§ π
β π) β π β π
) |
120 | 119 | adantr 480 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π β π
) |
121 | | simpr 484 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β (π
β π΄)(β€GβπΊ)(π β πΆ)) |
122 | 16 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π β π) |
123 | 1, 2, 3, 4, 5, 108, 113, 8, 122 | mircl 28176 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β (πβπ) β π) |
124 | 20 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β π
β π) |
125 | 25 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β (πβπ
) = π) |
126 | 1, 2, 3, 4, 5, 108, 113, 8, 124, 125 | mircom 28178 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β (πβπ) = π
) |
127 | 1, 2, 3, 79, 4, 107, 108, 9, 8, 109, 110, 111, 112, 113, 115, 116, 117, 120, 121, 123, 126 | opphllem3 28264 |
. . . 4
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β ((πβπ)(πΎβπ)πΆ β (πβ(πβπ))(πΎβπ
)π΄)) |
128 | 1, 2, 3, 4, 5, 108, 113, 8, 122 | mirmir 28177 |
. . . . 5
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β (πβ(πβπ)) = π) |
129 | 128 | breq1d 5159 |
. . . 4
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β ((πβ(πβπ))(πΎβπ
)π΄ β π(πΎβπ
)π΄)) |
130 | 127, 129 | bitr2d 279 |
. . 3
β’ (((π β§ π
β π) β§ (π
β π΄)(β€GβπΊ)(π β πΆ)) β (π(πΎβπ
)π΄ β (πβπ)(πΎβπ)πΆ)) |
131 | | eqid 2731 |
. . . . 5
β’
(β€GβπΊ) =
(β€GβπΊ) |
132 | 1, 2, 3, 131, 6, 34, 14, 20, 12 | legtrid 28106 |
. . . 4
β’ (π β ((π β πΆ)(β€GβπΊ)(π
β π΄) β¨ (π
β π΄)(β€GβπΊ)(π β πΆ))) |
133 | 132 | adantr 480 |
. . 3
β’ ((π β§ π
β π) β ((π β πΆ)(β€GβπΊ)(π
β π΄) β¨ (π
β π΄)(β€GβπΊ)(π β πΆ))) |
134 | 106, 130,
133 | mpjaodan 956 |
. 2
β’ ((π β§ π
β π) β (π(πΎβπ
)π΄ β (πβπ)(πΎβπ)πΆ)) |
135 | 91, 134 | pm2.61dane 3028 |
1
β’ (π β (π(πΎβπ
)π΄ β (πβπ)(πΎβπ)πΆ)) |