MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem6 Structured version   Visualization version   GIF version

Theorem opphllem6 26815
Description: First part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
opphllem5.n 𝑁 = ((pInvG‘𝐺)‘𝑀)
opphllem5.a (𝜑𝐴𝑃)
opphllem5.c (𝜑𝐶𝑃)
opphllem5.r (𝜑𝑅𝐷)
opphllem5.s (𝜑𝑆𝐷)
opphllem5.m (𝜑𝑀𝑃)
opphllem5.o (𝜑𝐴𝑂𝐶)
opphllem5.p (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
opphllem5.q (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
opphllem5.u (𝜑𝑈𝑃)
opphllem6.v (𝜑 → (𝑁𝑅) = 𝑆)
Assertion
Ref Expression
opphllem6 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝑈   𝑡,𝐼   𝑡,𝐾   𝑡,𝑀   𝑡,𝑂   𝑡,𝑁   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑈(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑁(𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem6
StepHypRef Expression
1 hpg.p . . . 4 𝑃 = (Base‘𝐺)
2 hpg.d . . . 4 = (dist‘𝐺)
3 hpg.i . . . 4 𝐼 = (Itv‘𝐺)
4 opphl.l . . . 4 𝐿 = (LineG‘𝐺)
5 eqid 2734 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
6 opphl.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 484 . . . 4 ((𝜑𝑅 = 𝑆) → 𝐺 ∈ TarskiG)
8 opphllem5.n . . . 4 𝑁 = ((pInvG‘𝐺)‘𝑀)
9 opphl.k . . . 4 𝐾 = (hlG‘𝐺)
10 opphllem5.m . . . . 5 (𝜑𝑀𝑃)
1110adantr 484 . . . 4 ((𝜑𝑅 = 𝑆) → 𝑀𝑃)
12 opphllem5.a . . . . 5 (𝜑𝐴𝑃)
1312adantr 484 . . . 4 ((𝜑𝑅 = 𝑆) → 𝐴𝑃)
14 opphllem5.c . . . . 5 (𝜑𝐶𝑃)
1514adantr 484 . . . 4 ((𝜑𝑅 = 𝑆) → 𝐶𝑃)
16 opphllem5.u . . . . 5 (𝜑𝑈𝑃)
1716adantr 484 . . . 4 ((𝜑𝑅 = 𝑆) → 𝑈𝑃)
18 opphl.d . . . . . . . 8 (𝜑𝐷 ∈ ran 𝐿)
19 opphllem5.r . . . . . . . 8 (𝜑𝑅𝐷)
201, 4, 3, 6, 18, 19tglnpt 26612 . . . . . . 7 (𝜑𝑅𝑃)
21 opphllem5.p . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
224, 6, 21perpln2 26774 . . . . . . 7 (𝜑 → (𝐴𝐿𝑅) ∈ ran 𝐿)
231, 3, 4, 6, 12, 20, 22tglnne 26691 . . . . . 6 (𝜑𝐴𝑅)
2423adantr 484 . . . . 5 ((𝜑𝑅 = 𝑆) → 𝐴𝑅)
25 opphllem6.v . . . . . . . 8 (𝜑 → (𝑁𝑅) = 𝑆)
2625adantr 484 . . . . . . 7 ((𝜑𝑅 = 𝑆) → (𝑁𝑅) = 𝑆)
27 simpr 488 . . . . . . 7 ((𝜑𝑅 = 𝑆) → 𝑅 = 𝑆)
2826, 27eqtr4d 2777 . . . . . 6 ((𝜑𝑅 = 𝑆) → (𝑁𝑅) = 𝑅)
291, 2, 3, 4, 5, 6, 10, 8, 20mirinv 26729 . . . . . . 7 (𝜑 → ((𝑁𝑅) = 𝑅𝑀 = 𝑅))
3029adantr 484 . . . . . 6 ((𝜑𝑅 = 𝑆) → ((𝑁𝑅) = 𝑅𝑀 = 𝑅))
3128, 30mpbid 235 . . . . 5 ((𝜑𝑅 = 𝑆) → 𝑀 = 𝑅)
3224, 31neeqtrrd 3009 . . . 4 ((𝜑𝑅 = 𝑆) → 𝐴𝑀)
33 opphllem5.s . . . . . . . 8 (𝜑𝑆𝐷)
341, 4, 3, 6, 18, 33tglnpt 26612 . . . . . . 7 (𝜑𝑆𝑃)
35 opphllem5.q . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
364, 6, 35perpln2 26774 . . . . . . 7 (𝜑 → (𝐶𝐿𝑆) ∈ ran 𝐿)
371, 3, 4, 6, 14, 34, 36tglnne 26691 . . . . . 6 (𝜑𝐶𝑆)
3837adantr 484 . . . . 5 ((𝜑𝑅 = 𝑆) → 𝐶𝑆)
3931, 27eqtrd 2774 . . . . 5 ((𝜑𝑅 = 𝑆) → 𝑀 = 𝑆)
4038, 39neeqtrrd 3009 . . . 4 ((𝜑𝑅 = 𝑆) → 𝐶𝑀)
41 simpr 488 . . . . . . . 8 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅 = 𝑡) → 𝑅 = 𝑡)
426ad4antr 732 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐺 ∈ TarskiG)
4314ad4antr 732 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐶𝑃)
4420ad4antr 732 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅𝑃)
456ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
4618ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ ran 𝐿)
47 simplr 769 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑡𝐷)
481, 4, 3, 45, 46, 47tglnpt 26612 . . . . . . . . . 10 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑡𝑃)
4948adantr 484 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡𝑃)
5012ad4antr 732 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐴𝑃)
5134ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑆𝑃)
52 simpllr 776 . . . . . . . . . . . 12 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 = 𝑆)
531, 3, 4, 6, 14, 34, 37tglinerflx2 26697 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (𝐶𝐿𝑆))
5453ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑆 ∈ (𝐶𝐿𝑆))
5552, 54eqeltrd 2834 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 ∈ (𝐶𝐿𝑆))
5655adantr 484 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅 ∈ (𝐶𝐿𝑆))
571, 2, 3, 4, 6, 18, 36, 35perpcom 26776 . . . . . . . . . . . 12 (𝜑 → (𝐶𝐿𝑆)(⟂G‘𝐺)𝐷)
5857ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐶𝐿𝑆)(⟂G‘𝐺)𝐷)
59 simpr 488 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅𝑡)
6018ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐷 ∈ ran 𝐿)
6119ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅𝐷)
62 simpllr 776 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡𝐷)
631, 3, 4, 42, 44, 49, 59, 59, 60, 61, 62tglinethru 26699 . . . . . . . . . . 11 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐷 = (𝑅𝐿𝑡))
6458, 63breqtrd 5069 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐶𝐿𝑆)(⟂G‘𝐺)(𝑅𝐿𝑡))
651, 2, 3, 4, 42, 43, 51, 56, 49, 64perprag 26789 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → ⟨“𝐶𝑅𝑡”⟩ ∈ (∟G‘𝐺))
661, 3, 4, 6, 12, 20, 23tglinerflx2 26697 . . . . . . . . . . 11 (𝜑𝑅 ∈ (𝐴𝐿𝑅))
6766ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅 ∈ (𝐴𝐿𝑅))
681, 2, 3, 4, 6, 18, 22, 21perpcom 26776 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐿𝑅)(⟂G‘𝐺)𝐷)
6968ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐴𝐿𝑅)(⟂G‘𝐺)𝐷)
7069, 63breqtrd 5069 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐴𝐿𝑅)(⟂G‘𝐺)(𝑅𝐿𝑡))
711, 2, 3, 4, 42, 50, 44, 67, 49, 70perprag 26789 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → ⟨“𝐴𝑅𝑡”⟩ ∈ (∟G‘𝐺))
72 simplr 769 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡 ∈ (𝐴𝐼𝐶))
731, 2, 3, 42, 50, 49, 43, 72tgbtwncom 26551 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡 ∈ (𝐶𝐼𝐴))
741, 2, 3, 4, 5, 42, 43, 44, 49, 50, 65, 71, 73ragflat2 26766 . . . . . . . 8 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅 = 𝑡)
7541, 74pm2.61dane 3022 . . . . . . 7 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 = 𝑡)
76 simpr 488 . . . . . . 7 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑡 ∈ (𝐴𝐼𝐶))
7775, 76eqeltrd 2834 . . . . . 6 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 ∈ (𝐴𝐼𝐶))
78 opphllem5.o . . . . . . . . 9 (𝜑𝐴𝑂𝐶)
79 hpg.o . . . . . . . . . 10 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
801, 2, 3, 79, 12, 14islnopp 26802 . . . . . . . . 9 (𝜑 → (𝐴𝑂𝐶 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))))
8178, 80mpbid 235 . . . . . . . 8 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶)))
8281simprd 499 . . . . . . 7 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))
8382adantr 484 . . . . . 6 ((𝜑𝑅 = 𝑆) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))
8477, 83r19.29a 3201 . . . . 5 ((𝜑𝑅 = 𝑆) → 𝑅 ∈ (𝐴𝐼𝐶))
8531, 84eqeltrd 2834 . . . 4 ((𝜑𝑅 = 𝑆) → 𝑀 ∈ (𝐴𝐼𝐶))
861, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 32, 40, 85mirbtwnhl 26743 . . 3 ((𝜑𝑅 = 𝑆) → (𝑈(𝐾𝑀)𝐴 ↔ (𝑁𝑈)(𝐾𝑀)𝐶))
8731fveq2d 6710 . . . 4 ((𝜑𝑅 = 𝑆) → (𝐾𝑀) = (𝐾𝑅))
8887breqd 5054 . . 3 ((𝜑𝑅 = 𝑆) → (𝑈(𝐾𝑀)𝐴𝑈(𝐾𝑅)𝐴))
8939fveq2d 6710 . . . 4 ((𝜑𝑅 = 𝑆) → (𝐾𝑀) = (𝐾𝑆))
9089breqd 5054 . . 3 ((𝜑𝑅 = 𝑆) → ((𝑁𝑈)(𝐾𝑀)𝐶 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
9186, 88, 903bitr3d 312 . 2 ((𝜑𝑅 = 𝑆) → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
9218ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐷 ∈ ran 𝐿)
936ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐺 ∈ TarskiG)
9412ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐴𝑃)
9514ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐶𝑃)
9619ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑅𝐷)
9733ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑆𝐷)
9810ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑀𝑃)
9978ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐴𝑂𝐶)
10021ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
10135ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
102 simplr 769 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑅𝑆)
103 simpr 488 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
10416ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑈𝑃)
10525ad2antrr 726 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → (𝑁𝑅) = 𝑆)
1061, 2, 3, 79, 4, 92, 93, 9, 8, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105opphllem3 26812 . . 3 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
10718ad2antrr 726 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐷 ∈ ran 𝐿)
1086ad2antrr 726 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐺 ∈ TarskiG)
10914ad2antrr 726 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐶𝑃)
11012ad2antrr 726 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐴𝑃)
11133ad2antrr 726 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑆𝐷)
11219ad2antrr 726 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑅𝐷)
11310ad2antrr 726 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑀𝑃)
11478ad2antrr 726 . . . . . 6 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐴𝑂𝐶)
1151, 2, 3, 79, 4, 107, 108, 110, 109, 114oppcom 26807 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐶𝑂𝐴)
11635ad2antrr 726 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
11721ad2antrr 726 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
118 simpr 488 . . . . . . 7 ((𝜑𝑅𝑆) → 𝑅𝑆)
119118necomd 2990 . . . . . 6 ((𝜑𝑅𝑆) → 𝑆𝑅)
120119adantr 484 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑆𝑅)
121 simpr 488 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶))
12216ad2antrr 726 . . . . . 6 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑈𝑃)
1231, 2, 3, 4, 5, 108, 113, 8, 122mircl 26724 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑁𝑈) ∈ 𝑃)
12420ad2antrr 726 . . . . . 6 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑅𝑃)
12525ad2antrr 726 . . . . . 6 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑁𝑅) = 𝑆)
1261, 2, 3, 4, 5, 108, 113, 8, 124, 125mircom 26726 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑁𝑆) = 𝑅)
1271, 2, 3, 79, 4, 107, 108, 9, 8, 109, 110, 111, 112, 113, 115, 116, 117, 120, 121, 123, 126opphllem3 26812 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → ((𝑁𝑈)(𝐾𝑆)𝐶 ↔ (𝑁‘(𝑁𝑈))(𝐾𝑅)𝐴))
1281, 2, 3, 4, 5, 108, 113, 8, 122mirmir 26725 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑁‘(𝑁𝑈)) = 𝑈)
129128breq1d 5053 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → ((𝑁‘(𝑁𝑈))(𝐾𝑅)𝐴𝑈(𝐾𝑅)𝐴))
130127, 129bitr2d 283 . . 3 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
131 eqid 2734 . . . . 5 (≤G‘𝐺) = (≤G‘𝐺)
1321, 2, 3, 131, 6, 34, 14, 20, 12legtrid 26654 . . . 4 (𝜑 → ((𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴) ∨ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)))
133132adantr 484 . . 3 ((𝜑𝑅𝑆) → ((𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴) ∨ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)))
134106, 130, 133mpjaodan 959 . 2 ((𝜑𝑅𝑆) → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
13591, 134pm2.61dane 3022 1 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2935  wrex 3055  cdif 3854   class class class wbr 5043  {copab 5105  ran crn 5541  cfv 6369  (class class class)co 7202  Basecbs 16684  distcds 16776  TarskiGcstrkg 26493  Itvcitv 26499  LineGclng 26500  ≤Gcleg 26645  hlGchlg 26663  pInvGcmir 26715  ⟂Gcperpg 26758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-concat 14109  df-s1 14136  df-s2 14396  df-s3 14397  df-trkgc 26511  df-trkgb 26512  df-trkgcb 26513  df-trkg 26516  df-cgrg 26574  df-leg 26646  df-hlg 26664  df-mir 26716  df-rag 26757  df-perpg 26759
This theorem is referenced by:  opphl  26817
  Copyright terms: Public domain W3C validator