MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem6 Structured version   Visualization version   GIF version

Theorem opphllem6 26208
Description: First part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
opphllem5.n 𝑁 = ((pInvG‘𝐺)‘𝑀)
opphllem5.a (𝜑𝐴𝑃)
opphllem5.c (𝜑𝐶𝑃)
opphllem5.r (𝜑𝑅𝐷)
opphllem5.s (𝜑𝑆𝐷)
opphllem5.m (𝜑𝑀𝑃)
opphllem5.o (𝜑𝐴𝑂𝐶)
opphllem5.p (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
opphllem5.q (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
opphllem5.u (𝜑𝑈𝑃)
opphllem6.v (𝜑 → (𝑁𝑅) = 𝑆)
Assertion
Ref Expression
opphllem6 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝑈   𝑡,𝐼   𝑡,𝐾   𝑡,𝑀   𝑡,𝑂   𝑡,𝑁   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑈(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑁(𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem6
StepHypRef Expression
1 hpg.p . . . 4 𝑃 = (Base‘𝐺)
2 hpg.d . . . 4 = (dist‘𝐺)
3 hpg.i . . . 4 𝐼 = (Itv‘𝐺)
4 opphl.l . . . 4 𝐿 = (LineG‘𝐺)
5 eqid 2793 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
6 opphl.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 481 . . . 4 ((𝜑𝑅 = 𝑆) → 𝐺 ∈ TarskiG)
8 opphllem5.n . . . 4 𝑁 = ((pInvG‘𝐺)‘𝑀)
9 opphl.k . . . 4 𝐾 = (hlG‘𝐺)
10 opphllem5.m . . . . 5 (𝜑𝑀𝑃)
1110adantr 481 . . . 4 ((𝜑𝑅 = 𝑆) → 𝑀𝑃)
12 opphllem5.a . . . . 5 (𝜑𝐴𝑃)
1312adantr 481 . . . 4 ((𝜑𝑅 = 𝑆) → 𝐴𝑃)
14 opphllem5.c . . . . 5 (𝜑𝐶𝑃)
1514adantr 481 . . . 4 ((𝜑𝑅 = 𝑆) → 𝐶𝑃)
16 opphllem5.u . . . . 5 (𝜑𝑈𝑃)
1716adantr 481 . . . 4 ((𝜑𝑅 = 𝑆) → 𝑈𝑃)
18 opphl.d . . . . . . . 8 (𝜑𝐷 ∈ ran 𝐿)
19 opphllem5.r . . . . . . . 8 (𝜑𝑅𝐷)
201, 4, 3, 6, 18, 19tglnpt 26005 . . . . . . 7 (𝜑𝑅𝑃)
21 opphllem5.p . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
224, 6, 21perpln2 26167 . . . . . . 7 (𝜑 → (𝐴𝐿𝑅) ∈ ran 𝐿)
231, 3, 4, 6, 12, 20, 22tglnne 26084 . . . . . 6 (𝜑𝐴𝑅)
2423adantr 481 . . . . 5 ((𝜑𝑅 = 𝑆) → 𝐴𝑅)
25 opphllem6.v . . . . . . . 8 (𝜑 → (𝑁𝑅) = 𝑆)
2625adantr 481 . . . . . . 7 ((𝜑𝑅 = 𝑆) → (𝑁𝑅) = 𝑆)
27 simpr 485 . . . . . . 7 ((𝜑𝑅 = 𝑆) → 𝑅 = 𝑆)
2826, 27eqtr4d 2832 . . . . . 6 ((𝜑𝑅 = 𝑆) → (𝑁𝑅) = 𝑅)
291, 2, 3, 4, 5, 6, 10, 8, 20mirinv 26122 . . . . . . 7 (𝜑 → ((𝑁𝑅) = 𝑅𝑀 = 𝑅))
3029adantr 481 . . . . . 6 ((𝜑𝑅 = 𝑆) → ((𝑁𝑅) = 𝑅𝑀 = 𝑅))
3128, 30mpbid 233 . . . . 5 ((𝜑𝑅 = 𝑆) → 𝑀 = 𝑅)
3224, 31neeqtrrd 3056 . . . 4 ((𝜑𝑅 = 𝑆) → 𝐴𝑀)
33 opphllem5.s . . . . . . . 8 (𝜑𝑆𝐷)
341, 4, 3, 6, 18, 33tglnpt 26005 . . . . . . 7 (𝜑𝑆𝑃)
35 opphllem5.q . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
364, 6, 35perpln2 26167 . . . . . . 7 (𝜑 → (𝐶𝐿𝑆) ∈ ran 𝐿)
371, 3, 4, 6, 14, 34, 36tglnne 26084 . . . . . 6 (𝜑𝐶𝑆)
3837adantr 481 . . . . 5 ((𝜑𝑅 = 𝑆) → 𝐶𝑆)
3931, 27eqtrd 2829 . . . . 5 ((𝜑𝑅 = 𝑆) → 𝑀 = 𝑆)
4038, 39neeqtrrd 3056 . . . 4 ((𝜑𝑅 = 𝑆) → 𝐶𝑀)
41 simpr 485 . . . . . . . 8 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅 = 𝑡) → 𝑅 = 𝑡)
426ad4antr 728 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐺 ∈ TarskiG)
4314ad4antr 728 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐶𝑃)
4420ad4antr 728 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅𝑃)
456ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
4618ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ ran 𝐿)
47 simplr 765 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑡𝐷)
481, 4, 3, 45, 46, 47tglnpt 26005 . . . . . . . . . 10 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑡𝑃)
4948adantr 481 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡𝑃)
5012ad4antr 728 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐴𝑃)
5134ad4antr 728 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑆𝑃)
52 simpllr 772 . . . . . . . . . . . 12 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 = 𝑆)
531, 3, 4, 6, 14, 34, 37tglinerflx2 26090 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (𝐶𝐿𝑆))
5453ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑆 ∈ (𝐶𝐿𝑆))
5552, 54eqeltrd 2881 . . . . . . . . . . 11 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 ∈ (𝐶𝐿𝑆))
5655adantr 481 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅 ∈ (𝐶𝐿𝑆))
571, 2, 3, 4, 6, 18, 36, 35perpcom 26169 . . . . . . . . . . . 12 (𝜑 → (𝐶𝐿𝑆)(⟂G‘𝐺)𝐷)
5857ad4antr 728 . . . . . . . . . . 11 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐶𝐿𝑆)(⟂G‘𝐺)𝐷)
59 simpr 485 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅𝑡)
6018ad4antr 728 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐷 ∈ ran 𝐿)
6119ad4antr 728 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅𝐷)
62 simpllr 772 . . . . . . . . . . . 12 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡𝐷)
631, 3, 4, 42, 44, 49, 59, 59, 60, 61, 62tglinethru 26092 . . . . . . . . . . 11 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝐷 = (𝑅𝐿𝑡))
6458, 63breqtrd 4982 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐶𝐿𝑆)(⟂G‘𝐺)(𝑅𝐿𝑡))
651, 2, 3, 4, 42, 43, 51, 56, 49, 64perprag 26182 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → ⟨“𝐶𝑅𝑡”⟩ ∈ (∟G‘𝐺))
661, 3, 4, 6, 12, 20, 23tglinerflx2 26090 . . . . . . . . . . 11 (𝜑𝑅 ∈ (𝐴𝐿𝑅))
6766ad4antr 728 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅 ∈ (𝐴𝐿𝑅))
681, 2, 3, 4, 6, 18, 22, 21perpcom 26169 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐿𝑅)(⟂G‘𝐺)𝐷)
6968ad4antr 728 . . . . . . . . . . 11 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐴𝐿𝑅)(⟂G‘𝐺)𝐷)
7069, 63breqtrd 4982 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → (𝐴𝐿𝑅)(⟂G‘𝐺)(𝑅𝐿𝑡))
711, 2, 3, 4, 42, 50, 44, 67, 49, 70perprag 26182 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → ⟨“𝐴𝑅𝑡”⟩ ∈ (∟G‘𝐺))
72 simplr 765 . . . . . . . . . 10 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡 ∈ (𝐴𝐼𝐶))
731, 2, 3, 42, 50, 49, 43, 72tgbtwncom 25944 . . . . . . . . 9 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑡 ∈ (𝐶𝐼𝐴))
741, 2, 3, 4, 5, 42, 43, 44, 49, 50, 65, 71, 73ragflat2 26159 . . . . . . . 8 (((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑅𝑡) → 𝑅 = 𝑡)
7541, 74pm2.61dane 3070 . . . . . . 7 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 = 𝑡)
76 simpr 485 . . . . . . 7 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑡 ∈ (𝐴𝐼𝐶))
7775, 76eqeltrd 2881 . . . . . 6 ((((𝜑𝑅 = 𝑆) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → 𝑅 ∈ (𝐴𝐼𝐶))
78 opphllem5.o . . . . . . . . 9 (𝜑𝐴𝑂𝐶)
79 hpg.o . . . . . . . . . 10 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
801, 2, 3, 79, 12, 14islnopp 26195 . . . . . . . . 9 (𝜑 → (𝐴𝑂𝐶 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))))
8178, 80mpbid 233 . . . . . . . 8 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶)))
8281simprd 496 . . . . . . 7 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))
8382adantr 481 . . . . . 6 ((𝜑𝑅 = 𝑆) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))
8477, 83r19.29a 3249 . . . . 5 ((𝜑𝑅 = 𝑆) → 𝑅 ∈ (𝐴𝐼𝐶))
8531, 84eqeltrd 2881 . . . 4 ((𝜑𝑅 = 𝑆) → 𝑀 ∈ (𝐴𝐼𝐶))
861, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 32, 40, 85mirbtwnhl 26136 . . 3 ((𝜑𝑅 = 𝑆) → (𝑈(𝐾𝑀)𝐴 ↔ (𝑁𝑈)(𝐾𝑀)𝐶))
8731fveq2d 6534 . . . 4 ((𝜑𝑅 = 𝑆) → (𝐾𝑀) = (𝐾𝑅))
8887breqd 4967 . . 3 ((𝜑𝑅 = 𝑆) → (𝑈(𝐾𝑀)𝐴𝑈(𝐾𝑅)𝐴))
8939fveq2d 6534 . . . 4 ((𝜑𝑅 = 𝑆) → (𝐾𝑀) = (𝐾𝑆))
9089breqd 4967 . . 3 ((𝜑𝑅 = 𝑆) → ((𝑁𝑈)(𝐾𝑀)𝐶 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
9186, 88, 903bitr3d 310 . 2 ((𝜑𝑅 = 𝑆) → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
9218ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐷 ∈ ran 𝐿)
936ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐺 ∈ TarskiG)
9412ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐴𝑃)
9514ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐶𝑃)
9619ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑅𝐷)
9733ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑆𝐷)
9810ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑀𝑃)
9978ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐴𝑂𝐶)
10021ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
10135ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
102 simplr 765 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑅𝑆)
103 simpr 485 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
10416ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → 𝑈𝑃)
10525ad2antrr 722 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → (𝑁𝑅) = 𝑆)
1061, 2, 3, 79, 4, 92, 93, 9, 8, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105opphllem3 26205 . . 3 (((𝜑𝑅𝑆) ∧ (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴)) → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
10718ad2antrr 722 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐷 ∈ ran 𝐿)
1086ad2antrr 722 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐺 ∈ TarskiG)
10914ad2antrr 722 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐶𝑃)
11012ad2antrr 722 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐴𝑃)
11133ad2antrr 722 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑆𝐷)
11219ad2antrr 722 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑅𝐷)
11310ad2antrr 722 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑀𝑃)
11478ad2antrr 722 . . . . . 6 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐴𝑂𝐶)
1151, 2, 3, 79, 4, 107, 108, 110, 109, 114oppcom 26200 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐶𝑂𝐴)
11635ad2antrr 722 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
11721ad2antrr 722 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
118 simpr 485 . . . . . . 7 ((𝜑𝑅𝑆) → 𝑅𝑆)
119118necomd 3037 . . . . . 6 ((𝜑𝑅𝑆) → 𝑆𝑅)
120119adantr 481 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑆𝑅)
121 simpr 485 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶))
12216ad2antrr 722 . . . . . 6 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑈𝑃)
1231, 2, 3, 4, 5, 108, 113, 8, 122mircl 26117 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑁𝑈) ∈ 𝑃)
12420ad2antrr 722 . . . . . 6 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → 𝑅𝑃)
12525ad2antrr 722 . . . . . 6 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑁𝑅) = 𝑆)
1261, 2, 3, 4, 5, 108, 113, 8, 124, 125mircom 26119 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑁𝑆) = 𝑅)
1271, 2, 3, 79, 4, 107, 108, 9, 8, 109, 110, 111, 112, 113, 115, 116, 117, 120, 121, 123, 126opphllem3 26205 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → ((𝑁𝑈)(𝐾𝑆)𝐶 ↔ (𝑁‘(𝑁𝑈))(𝐾𝑅)𝐴))
1281, 2, 3, 4, 5, 108, 113, 8, 122mirmir 26118 . . . . 5 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑁‘(𝑁𝑈)) = 𝑈)
129128breq1d 4966 . . . 4 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → ((𝑁‘(𝑁𝑈))(𝐾𝑅)𝐴𝑈(𝐾𝑅)𝐴))
130127, 129bitr2d 281 . . 3 (((𝜑𝑅𝑆) ∧ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)) → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
131 eqid 2793 . . . . 5 (≤G‘𝐺) = (≤G‘𝐺)
1321, 2, 3, 131, 6, 34, 14, 20, 12legtrid 26047 . . . 4 (𝜑 → ((𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴) ∨ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)))
133132adantr 481 . . 3 ((𝜑𝑅𝑆) → ((𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴) ∨ (𝑅 𝐴)(≤G‘𝐺)(𝑆 𝐶)))
134106, 130, 133mpjaodan 951 . 2 ((𝜑𝑅𝑆) → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
13591, 134pm2.61dane 3070 1 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1520  wcel 2079  wne 2982  wrex 3104  cdif 3851   class class class wbr 4956  {copab 5018  ran crn 5436  cfv 6217  (class class class)co 7007  Basecbs 16300  distcds 16391  TarskiGcstrkg 25886  Itvcitv 25892  LineGclng 25893  ≤Gcleg 26038  hlGchlg 26056  pInvGcmir 26108  ⟂Gcperpg 26151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-oadd 7948  df-er 8130  df-map 8249  df-pm 8250  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-dju 9165  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-2 11537  df-3 11538  df-n0 11735  df-xnn0 11805  df-z 11819  df-uz 12083  df-fz 12732  df-fzo 12873  df-hash 13529  df-word 13696  df-concat 13757  df-s1 13782  df-s2 14034  df-s3 14035  df-trkgc 25904  df-trkgb 25905  df-trkgcb 25906  df-trkg 25909  df-cgrg 25967  df-leg 26039  df-hlg 26057  df-mir 26109  df-rag 26150  df-perpg 26152
This theorem is referenced by:  opphl  26210
  Copyright terms: Public domain W3C validator