MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2 Structured version   Visualization version   GIF version

Theorem ismri2 17538
Description: Criterion for a subset of the base set in a Moore system to be independent. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2.1 𝑁 = (mrCls‘𝐴)
ismri2.2 𝐼 = (mrInd‘𝐴)
Assertion
Ref Expression
ismri2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆
Allowed substitution hints:   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem ismri2
StepHypRef Expression
1 ismri2.1 . . 3 𝑁 = (mrCls‘𝐴)
2 ismri2.2 . . 3 𝐼 = (mrInd‘𝐴)
31, 2ismri 17537 . 2 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
43baibd 539 1 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3900  wss 3903  {csn 4577  cfv 6482  Moorecmre 17484  mrClscmrc 17485  mrIndcmri 17486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fv 6490  df-mre 17488  df-mri 17490
This theorem is referenced by:  ismri2d  17539  lindsdom  37594  aacllem  49786
  Copyright terms: Public domain W3C validator