![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismri2 | Structured version Visualization version GIF version |
Description: Criterion for a subset of the base set in a Moore system to be independent. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ismri2.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
ismri2.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
Ref | Expression |
---|---|
ismri2 | ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismri2.1 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | ismri2.2 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | 1, 2 | ismri 16605 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
4 | 3 | baibd 536 | 1 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3090 ∖ cdif 3767 ⊆ wss 3770 {csn 4369 ‘cfv 6102 Moorecmre 16556 mrClscmrc 16557 mrIndcmri 16558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-iota 6065 df-fun 6104 df-fv 6110 df-mre 16560 df-mri 16562 |
This theorem is referenced by: ismri2d 16607 lindsdom 33891 aacllem 43344 |
Copyright terms: Public domain | W3C validator |