![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismri2 | Structured version Visualization version GIF version |
Description: Criterion for a subset of the base set in a Moore system to be independent. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ismri2.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
ismri2.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
Ref | Expression |
---|---|
ismri2 | ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismri2.1 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | ismri2.2 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | 1, 2 | ismri 17682 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
4 | 3 | baibd 539 | 1 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∀wral 3060 ∖ cdif 3961 ⊆ wss 3964 {csn 4632 ‘cfv 6566 Moorecmre 17633 mrClscmrc 17634 mrIndcmri 17635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-iota 6519 df-fun 6568 df-fv 6574 df-mre 17637 df-mri 17639 |
This theorem is referenced by: ismri2d 17684 lindsdom 37613 aacllem 49053 |
Copyright terms: Public domain | W3C validator |