MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2d Structured version   Visualization version   GIF version

Theorem ismri2d 17581
Description: Criterion for a subset of the base set in a Moore system to be independent. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2.1 𝑁 = (mrClsβ€˜π΄)
ismri2.2 𝐼 = (mrIndβ€˜π΄)
ismri2d.3 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
ismri2d.4 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
Assertion
Ref Expression
ismri2d (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯}))))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑆
Allowed substitution hints:   πœ‘(π‘₯)   𝐼(π‘₯)   𝑁(π‘₯)   𝑋(π‘₯)

Proof of Theorem ismri2d
StepHypRef Expression
1 ismri2d.3 . 2 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
2 ismri2d.4 . 2 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
3 ismri2.1 . . 3 𝑁 = (mrClsβ€˜π΄)
4 ismri2.2 . . 3 𝐼 = (mrIndβ€˜π΄)
53, 4ismri2 17580 . 2 ((𝐴 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯}))))
61, 2, 5syl2anc 582 1 (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯}))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   βˆ– cdif 3944   βŠ† wss 3947  {csn 4627  β€˜cfv 6542  Moorecmre 17530  mrClscmrc 17531  mrIndcmri 17532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fv 6550  df-mre 17534  df-mri 17536
This theorem is referenced by:  ismri2dd  17582  ismri2dad  17585  mrieqvd  17586  mrieqv2d  17587  mrissmrid  17589
  Copyright terms: Public domain W3C validator