MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2d Structured version   Visualization version   GIF version

Theorem ismri2d 17646
Description: Criterion for a subset of the base set in a Moore system to be independent. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2.1 𝑁 = (mrCls‘𝐴)
ismri2.2 𝐼 = (mrInd‘𝐴)
ismri2d.3 (𝜑𝐴 ∈ (Moore‘𝑋))
ismri2d.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
ismri2d (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem ismri2d
StepHypRef Expression
1 ismri2d.3 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 ismri2d.4 . 2 (𝜑𝑆𝑋)
3 ismri2.1 . . 3 𝑁 = (mrCls‘𝐴)
4 ismri2.2 . . 3 𝐼 = (mrInd‘𝐴)
53, 4ismri2 17645 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
61, 2, 5syl2anc 582 1 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1534  wcel 2099  wral 3051  cdif 3944  wss 3947  {csn 4633  cfv 6554  Moorecmre 17595  mrClscmrc 17596  mrIndcmri 17597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6506  df-fun 6556  df-fv 6562  df-mre 17599  df-mri 17601
This theorem is referenced by:  ismri2dd  17647  ismri2dad  17650  mrieqvd  17651  mrieqv2d  17652  mrissmrid  17654
  Copyright terms: Public domain W3C validator