| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismri2d | Structured version Visualization version GIF version | ||
| Description: Criterion for a subset of the base set in a Moore system to be independent. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ismri2.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
| ismri2.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
| ismri2d.3 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| ismri2d.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| ismri2d | ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismri2d.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | ismri2d.4 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 3 | ismri2.1 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 4 | ismri2.2 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 5 | 3, 4 | ismri2 17569 | . 2 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
| 6 | 1, 2, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 ‘cfv 6499 Moorecmre 17519 mrClscmrc 17520 mrIndcmri 17521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fv 6507 df-mre 17523 df-mri 17525 |
| This theorem is referenced by: ismri2dd 17571 ismri2dad 17574 mrieqvd 17575 mrieqv2d 17576 mrissmrid 17578 |
| Copyright terms: Public domain | W3C validator |