MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2d Structured version   Visualization version   GIF version

Theorem ismri2d 17439
Description: Criterion for a subset of the base set in a Moore system to be independent. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2.1 𝑁 = (mrClsβ€˜π΄)
ismri2.2 𝐼 = (mrIndβ€˜π΄)
ismri2d.3 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
ismri2d.4 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
Assertion
Ref Expression
ismri2d (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯}))))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑆
Allowed substitution hints:   πœ‘(π‘₯)   𝐼(π‘₯)   𝑁(π‘₯)   𝑋(π‘₯)

Proof of Theorem ismri2d
StepHypRef Expression
1 ismri2d.3 . 2 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
2 ismri2d.4 . 2 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
3 ismri2.1 . . 3 𝑁 = (mrClsβ€˜π΄)
4 ismri2.2 . . 3 𝐼 = (mrIndβ€˜π΄)
53, 4ismri2 17438 . 2 ((𝐴 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯}))))
61, 2, 5syl2anc 584 1 (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯}))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   = wceq 1540   ∈ wcel 2105  βˆ€wral 3061   βˆ– cdif 3895   βŠ† wss 3898  {csn 4573  β€˜cfv 6479  Moorecmre 17388  mrClscmrc 17389  mrIndcmri 17390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-iota 6431  df-fun 6481  df-fv 6487  df-mre 17392  df-mri 17394
This theorem is referenced by:  ismri2dd  17440  ismri2dad  17443  mrieqvd  17444  mrieqv2d  17445  mrissmrid  17447
  Copyright terms: Public domain W3C validator