Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsdom Structured version   Visualization version   GIF version

Theorem lindsdom 37218
Description: A linearly independent set in a free linear module of finite dimension over a division ring is smaller than the dimension of the module. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
lindsdom ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋𝐼)

Proof of Theorem lindsdom
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngring 20643 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2725 . . . . . . . 8 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
32frlmlmod 21700 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
41, 3sylan 578 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
5 eqid 2725 . . . . . . 7 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
6 eqid 2725 . . . . . . 7 (LSubSp‘(𝑅 freeLMod 𝐼)) = (LSubSp‘(𝑅 freeLMod 𝐼))
75, 6lssmre 20862 . . . . . 6 ((𝑅 freeLMod 𝐼) ∈ LMod → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))))
84, 7syl 17 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))))
983adant3 1129 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))))
10 eqid 2725 . . . 4 (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))
11 eqid 2725 . . . 4 (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) = (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))
122frlmsca 21704 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
13 simpl 481 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
1412, 13eqeltrrd 2826 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing)
15 eqid 2725 . . . . . . . . 9 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
1615islvec 21001 . . . . . . . 8 ((𝑅 freeLMod 𝐼) ∈ LVec ↔ ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing))
174, 14, 16sylanbrc 581 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LVec)
186, 10, 5lssacsex 21044 . . . . . . 7 ((𝑅 freeLMod 𝐼) ∈ LVec → ((LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (ACS‘(Base‘(𝑅 freeLMod 𝐼))) ∧ ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧}))))
1917, 18syl 17 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (ACS‘(Base‘(𝑅 freeLMod 𝐼))) ∧ ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧}))))
2019simprd 494 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧})))
21203adant3 1129 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧})))
22 dif0 4374 . . . . . 6 ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅) = (Base‘(𝑅 freeLMod 𝐼))
2322linds1 21761 . . . . 5 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
24233ad2ant3 1132 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
25 eqid 2725 . . . . . . . . 9 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
2625, 2, 5uvcff 21742 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
271, 26sylan 578 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
2827frnd 6731 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
2928, 22sseqtrrdi 4028 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
30293adant3 1129 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ran (𝑅 unitVec 𝐼) ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
315linds1 21761 . . . . . 6 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
32313ad2ant3 1132 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
33 un0 4392 . . . . . . . 8 (ran (𝑅 unitVec 𝐼) ∪ ∅) = ran (𝑅 unitVec 𝐼)
3433fveq2i 6899 . . . . . . 7 ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼))
35 eqid 2725 . . . . . . . . . . 11 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
366, 35, 10mrclsp 20885 . . . . . . . . . 10 ((𝑅 freeLMod 𝐼) ∈ LMod → (LSpan‘(𝑅 freeLMod 𝐼)) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))))
374, 36syl 17 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (LSpan‘(𝑅 freeLMod 𝐼)) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))))
3837fveq1d 6898 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran (𝑅 unitVec 𝐼)) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼)))
39 eqid 2725 . . . . . . . . . . 11 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
402, 25, 39frlmlbs 21748 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
411, 40sylan 578 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
425, 39, 35lbssp 20976 . . . . . . . . 9 (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
4341, 42syl 17 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
4438, 43eqtr3d 2767 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
4534, 44eqtrid 2777 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = (Base‘(𝑅 freeLMod 𝐼)))
46453adant3 1129 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = (Base‘(𝑅 freeLMod 𝐼)))
4732, 46sseqtrrd 4018 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)))
48 un0 4392 . . . . 5 (𝑋 ∪ ∅) = 𝑋
49 drngnzr 20656 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
5049adantr 479 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
5112, 50eqeltrrd 2826 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
524, 51jca 510 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
5335, 15lindsind2 21770 . . . . . . . . . . 11 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
54533expa 1115 . . . . . . . . . 10 (((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
5552, 54sylanl1 678 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
5637fveq1d 6898 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
5756eleq2d 2811 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ↔ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
5857ad2antrr 724 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ↔ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
5955, 58mtbid 323 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
6059ralrimiva 3135 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
61603impa 1107 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
6210, 11ismri2 17615 . . . . . . . 8 (((LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
638, 31, 62syl2an 594 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
64633impa 1107 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
6561, 64mpbird 256 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))
6648, 65eqeltrid 2829 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))
67 simpr 483 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝐼 ∈ Fin)
6825uvcendim 21798 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ 𝐼 ∈ Fin) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
6949, 68sylan 578 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
70 enfi 9215 . . . . . . . 8 (𝐼 ≈ ran (𝑅 unitVec 𝐼) → (𝐼 ∈ Fin ↔ ran (𝑅 unitVec 𝐼) ∈ Fin))
7169, 70syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝐼 ∈ Fin ↔ ran (𝑅 unitVec 𝐼) ∈ Fin))
7267, 71mpbid 231 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ Fin)
7372olcd 872 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑋 ∈ Fin ∨ ran (𝑅 unitVec 𝐼) ∈ Fin))
74733adant3 1129 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ Fin ∨ ran (𝑅 unitVec 𝐼) ∈ Fin))
759, 10, 11, 21, 24, 30, 47, 66, 74mreexexd 17631 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∃𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼)(𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))))
76 simpl 481 . . . . 5 ((𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))) → 𝑋𝑓)
77 ovex 7452 . . . . . . 7 (𝑅 unitVec 𝐼) ∈ V
7877rnex 7918 . . . . . 6 ran (𝑅 unitVec 𝐼) ∈ V
79 elpwi 4611 . . . . . 6 (𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) → 𝑓 ⊆ ran (𝑅 unitVec 𝐼))
80 ssdomg 9021 . . . . . 6 (ran (𝑅 unitVec 𝐼) ∈ V → (𝑓 ⊆ ran (𝑅 unitVec 𝐼) → 𝑓 ≼ ran (𝑅 unitVec 𝐼)))
8178, 79, 80mpsyl 68 . . . . 5 (𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) → 𝑓 ≼ ran (𝑅 unitVec 𝐼))
82 endomtr 9033 . . . . 5 ((𝑋𝑓𝑓 ≼ ran (𝑅 unitVec 𝐼)) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8376, 81, 82syl2anr 595 . . . 4 ((𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) ∧ (𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8483rexlimiva 3136 . . 3 (∃𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼)(𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8575, 84syl 17 . 2 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8669ensymd 9026 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ≈ 𝐼)
87863adant3 1129 . 2 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ran (𝑅 unitVec 𝐼) ≈ 𝐼)
88 domentr 9034 . 2 ((𝑋 ≼ ran (𝑅 unitVec 𝐼) ∧ ran (𝑅 unitVec 𝐼) ≈ 𝐼) → 𝑋𝐼)
8985, 87, 88syl2anc 582 1 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  Vcvv 3461  cdif 3941  cun 3942  wss 3944  c0 4322  𝒫 cpw 4604  {csn 4630   class class class wbr 5149  ran crn 5679  wf 6545  cfv 6549  (class class class)co 7419  cen 8961  cdom 8962  Fincfn 8964  Basecbs 17183  Scalarcsca 17239  Moorecmre 17565  mrClscmrc 17566  mrIndcmri 17567  ACScacs 17568  Ringcrg 20185  NzRingcnzr 20463  DivRingcdr 20636  LModclmod 20755  LSubSpclss 20827  LSpanclspn 20867  LBasisclbs 20971  LVecclvec 20999   freeLMod cfrlm 21697   unitVec cuvc 21733  LIndSclinds 21756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-mri 17571  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-nzr 20464  df-subrg 20520  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lmhm 20919  df-lbs 20972  df-lvec 21000  df-sra 21070  df-rgmod 21071  df-dsmm 21683  df-frlm 21698  df-uvc 21734  df-lindf 21757  df-linds 21758
This theorem is referenced by:  lindsenlbs  37219
  Copyright terms: Public domain W3C validator