Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsdom Structured version   Visualization version   GIF version

Theorem lindsdom 33892
Description: A linearly independent set in a free linear module of finite dimension over a division ring is smaller than the dimension of the module. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
lindsdom ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋𝐼)

Proof of Theorem lindsdom
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngring 19072 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2799 . . . . . . . 8 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
32frlmlmod 20418 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
41, 3sylan 576 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
5 eqid 2799 . . . . . . 7 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
6 eqid 2799 . . . . . . 7 (LSubSp‘(𝑅 freeLMod 𝐼)) = (LSubSp‘(𝑅 freeLMod 𝐼))
75, 6lssmre 19287 . . . . . 6 ((𝑅 freeLMod 𝐼) ∈ LMod → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))))
84, 7syl 17 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))))
983adant3 1163 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))))
10 eqid 2799 . . . 4 (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))
11 eqid 2799 . . . 4 (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) = (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))
122frlmsca 20422 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
13 simpl 475 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
1412, 13eqeltrrd 2879 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing)
15 eqid 2799 . . . . . . . . 9 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
1615islvec 19425 . . . . . . . 8 ((𝑅 freeLMod 𝐼) ∈ LVec ↔ ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing))
174, 14, 16sylanbrc 579 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LVec)
186, 10, 5lssacsex 19466 . . . . . . 7 ((𝑅 freeLMod 𝐼) ∈ LVec → ((LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (ACS‘(Base‘(𝑅 freeLMod 𝐼))) ∧ ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧}))))
1917, 18syl 17 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (ACS‘(Base‘(𝑅 freeLMod 𝐼))) ∧ ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧}))))
2019simprd 490 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧})))
21203adant3 1163 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧})))
22 dif0 4151 . . . . . 6 ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅) = (Base‘(𝑅 freeLMod 𝐼))
2322linds1 20474 . . . . 5 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
24233ad2ant3 1166 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
25 eqid 2799 . . . . . . . . 9 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
2625, 2, 5uvcff 20455 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
271, 26sylan 576 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
2827frnd 6263 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
2928, 22syl6sseqr 3848 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
30293adant3 1163 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ran (𝑅 unitVec 𝐼) ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
315linds1 20474 . . . . . 6 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
32313ad2ant3 1166 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
33 un0 4163 . . . . . . . 8 (ran (𝑅 unitVec 𝐼) ∪ ∅) = ran (𝑅 unitVec 𝐼)
3433fveq2i 6414 . . . . . . 7 ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼))
35 eqid 2799 . . . . . . . . . . 11 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
366, 35, 10mrclsp 19310 . . . . . . . . . 10 ((𝑅 freeLMod 𝐼) ∈ LMod → (LSpan‘(𝑅 freeLMod 𝐼)) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))))
374, 36syl 17 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (LSpan‘(𝑅 freeLMod 𝐼)) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))))
3837fveq1d 6413 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran (𝑅 unitVec 𝐼)) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼)))
39 eqid 2799 . . . . . . . . . . 11 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
402, 25, 39frlmlbs 20461 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
411, 40sylan 576 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
425, 39, 35lbssp 19400 . . . . . . . . 9 (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
4341, 42syl 17 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
4438, 43eqtr3d 2835 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
4534, 44syl5eq 2845 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = (Base‘(𝑅 freeLMod 𝐼)))
46453adant3 1163 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = (Base‘(𝑅 freeLMod 𝐼)))
4732, 46sseqtr4d 3838 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)))
48 un0 4163 . . . . 5 (𝑋 ∪ ∅) = 𝑋
49 drngnzr 19585 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
5049adantr 473 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
5112, 50eqeltrrd 2879 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
524, 51jca 508 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
5335, 15lindsind2 20483 . . . . . . . . . . 11 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
54533expa 1148 . . . . . . . . . 10 (((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
5552, 54sylanl1 671 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
5637fveq1d 6413 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
5756eleq2d 2864 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ↔ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
5857ad2antrr 718 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ↔ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
5955, 58mtbid 316 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
6059ralrimiva 3147 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
61603impa 1137 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
6210, 11ismri2 16607 . . . . . . . 8 (((LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
638, 31, 62syl2an 590 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
64633impa 1137 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
6561, 64mpbird 249 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))
6648, 65syl5eqel 2882 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))
67 simpr 478 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝐼 ∈ Fin)
6825uvcendim 20511 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ 𝐼 ∈ Fin) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
6949, 68sylan 576 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
70 enfi 8418 . . . . . . . 8 (𝐼 ≈ ran (𝑅 unitVec 𝐼) → (𝐼 ∈ Fin ↔ ran (𝑅 unitVec 𝐼) ∈ Fin))
7169, 70syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝐼 ∈ Fin ↔ ran (𝑅 unitVec 𝐼) ∈ Fin))
7267, 71mpbid 224 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ Fin)
7372olcd 901 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑋 ∈ Fin ∨ ran (𝑅 unitVec 𝐼) ∈ Fin))
74733adant3 1163 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ Fin ∨ ran (𝑅 unitVec 𝐼) ∈ Fin))
759, 10, 11, 21, 24, 30, 47, 66, 74mreexexd 16623 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∃𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼)(𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))))
76 simpl 475 . . . . 5 ((𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))) → 𝑋𝑓)
77 ovex 6910 . . . . . . 7 (𝑅 unitVec 𝐼) ∈ V
7877rnex 7335 . . . . . 6 ran (𝑅 unitVec 𝐼) ∈ V
79 elpwi 4359 . . . . . 6 (𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) → 𝑓 ⊆ ran (𝑅 unitVec 𝐼))
80 ssdomg 8241 . . . . . 6 (ran (𝑅 unitVec 𝐼) ∈ V → (𝑓 ⊆ ran (𝑅 unitVec 𝐼) → 𝑓 ≼ ran (𝑅 unitVec 𝐼)))
8178, 79, 80mpsyl 68 . . . . 5 (𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) → 𝑓 ≼ ran (𝑅 unitVec 𝐼))
82 endomtr 8253 . . . . 5 ((𝑋𝑓𝑓 ≼ ran (𝑅 unitVec 𝐼)) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8376, 81, 82syl2anr 591 . . . 4 ((𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) ∧ (𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8483rexlimiva 3209 . . 3 (∃𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼)(𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8575, 84syl 17 . 2 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8669ensymd 8246 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ≈ 𝐼)
87863adant3 1163 . 2 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ran (𝑅 unitVec 𝐼) ≈ 𝐼)
88 domentr 8254 . 2 ((𝑋 ≼ ran (𝑅 unitVec 𝐼) ∧ ran (𝑅 unitVec 𝐼) ≈ 𝐼) → 𝑋𝐼)
8985, 87, 88syl2anc 580 1 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wo 874  w3a 1108   = wceq 1653  wcel 2157  wral 3089  wrex 3090  Vcvv 3385  cdif 3766  cun 3767  wss 3769  c0 4115  𝒫 cpw 4349  {csn 4368   class class class wbr 4843  ran crn 5313  wf 6097  cfv 6101  (class class class)co 6878  cen 8192  cdom 8193  Fincfn 8195  Basecbs 16184  Scalarcsca 16270  Moorecmre 16557  mrClscmrc 16558  mrIndcmri 16559  ACScacs 16560  Ringcrg 18863  DivRingcdr 19065  LModclmod 19181  LSubSpclss 19250  LSpanclspn 19292  LBasisclbs 19395  LVecclvec 19423  NzRingcnzr 19580   freeLMod cfrlm 20415   unitVec cuvc 20446  LIndSclinds 20469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-fzo 12721  df-seq 13056  df-hash 13371  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-hom 16291  df-cco 16292  df-0g 16417  df-gsum 16418  df-prds 16423  df-pws 16425  df-mre 16561  df-mrc 16562  df-mri 16563  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mhm 17650  df-submnd 17651  df-grp 17741  df-minusg 17742  df-sbg 17743  df-mulg 17857  df-subg 17904  df-ghm 17971  df-cntz 18062  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-drng 19067  df-subrg 19096  df-lmod 19183  df-lss 19251  df-lsp 19293  df-lmhm 19343  df-lbs 19396  df-lvec 19424  df-sra 19495  df-rgmod 19496  df-nzr 19581  df-dsmm 20401  df-frlm 20416  df-uvc 20447  df-lindf 20470  df-linds 20471
This theorem is referenced by:  lindsenlbs  33893
  Copyright terms: Public domain W3C validator