| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | drngring 20737 | . . . . . . 7
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | 
| 2 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼) | 
| 3 | 2 | frlmlmod 21770 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod) | 
| 4 | 1, 3 | sylan 580 | . . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod) | 
| 5 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘(𝑅
freeLMod 𝐼)) =
(Base‘(𝑅 freeLMod
𝐼)) | 
| 6 |  | eqid 2736 | . . . . . . 7
⊢
(LSubSp‘(𝑅
freeLMod 𝐼)) =
(LSubSp‘(𝑅 freeLMod
𝐼)) | 
| 7 | 5, 6 | lssmre 20965 | . . . . . 6
⊢ ((𝑅 freeLMod 𝐼) ∈ LMod → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼)))) | 
| 8 | 4, 7 | syl 17 | . . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
(LSubSp‘(𝑅 freeLMod
𝐼)) ∈
(Moore‘(Base‘(𝑅
freeLMod 𝐼)))) | 
| 9 | 8 | 3adant3 1132 | . . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼)))) | 
| 10 |  | eqid 2736 | . . . 4
⊢
(mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))) | 
| 11 |  | eqid 2736 | . . . 4
⊢
(mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) = (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) | 
| 12 | 2 | frlmsca 21774 | . . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼))) | 
| 13 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈
DivRing) | 
| 14 | 12, 13 | eqeltrrd 2841 | . . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
(Scalar‘(𝑅 freeLMod
𝐼)) ∈
DivRing) | 
| 15 |  | eqid 2736 | . . . . . . . . 9
⊢
(Scalar‘(𝑅
freeLMod 𝐼)) =
(Scalar‘(𝑅 freeLMod
𝐼)) | 
| 16 | 15 | islvec 21104 | . . . . . . . 8
⊢ ((𝑅 freeLMod 𝐼) ∈ LVec ↔ ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing)) | 
| 17 | 4, 14, 16 | sylanbrc 583 | . . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LVec) | 
| 18 | 6, 10, 5 | lssacsex 21147 | . . . . . . 7
⊢ ((𝑅 freeLMod 𝐼) ∈ LVec → ((LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (ACS‘(Base‘(𝑅 freeLMod 𝐼))) ∧ ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖
((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧})))) | 
| 19 | 17, 18 | syl 17 | . . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
((LSubSp‘(𝑅 freeLMod
𝐼)) ∈
(ACS‘(Base‘(𝑅
freeLMod 𝐼))) ∧
∀𝑥 ∈ 𝒫
(Base‘(𝑅 freeLMod
𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖
((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧})))) | 
| 20 | 19 | simprd 495 | . . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
∀𝑥 ∈ 𝒫
(Base‘(𝑅 freeLMod
𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖
((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧}))) | 
| 21 | 20 | 3adant3 1132 | . . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖
((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧}))) | 
| 22 |  | dif0 4377 | . . . . . 6
⊢
((Base‘(𝑅
freeLMod 𝐼)) ∖
∅) = (Base‘(𝑅
freeLMod 𝐼)) | 
| 23 | 22 | linds1 21831 | . . . . 5
⊢ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅)) | 
| 24 | 23 | 3ad2ant3 1135 | . . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅)) | 
| 25 |  | eqid 2736 | . . . . . . . . 9
⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | 
| 26 | 25, 2, 5 | uvcff 21812 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) | 
| 27 | 1, 26 | sylan 580 | . . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) | 
| 28 | 27 | frnd 6743 | . . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ⊆ (Base‘(𝑅 freeLMod 𝐼))) | 
| 29 | 28, 22 | sseqtrrdi 4024 | . . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅)) | 
| 30 | 29 | 3adant3 1132 | . . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ran (𝑅 unitVec 𝐼) ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅)) | 
| 31 | 5 | linds1 21831 | . . . . . 6
⊢ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) | 
| 32 | 31 | 3ad2ant3 1135 | . . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) | 
| 33 |  | un0 4393 | . . . . . . . 8
⊢ (ran
(𝑅 unitVec 𝐼) ∪ ∅) = ran (𝑅 unitVec 𝐼) | 
| 34 | 33 | fveq2i 6908 | . . . . . . 7
⊢
((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) =
((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼)) | 
| 35 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(LSpan‘(𝑅
freeLMod 𝐼)) =
(LSpan‘(𝑅 freeLMod
𝐼)) | 
| 36 | 6, 35, 10 | mrclsp 20988 | . . . . . . . . . 10
⊢ ((𝑅 freeLMod 𝐼) ∈ LMod → (LSpan‘(𝑅 freeLMod 𝐼)) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))) | 
| 37 | 4, 36 | syl 17 | . . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
(LSpan‘(𝑅 freeLMod
𝐼)) =
(mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))) | 
| 38 | 37 | fveq1d 6907 | . . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
((LSpan‘(𝑅 freeLMod
𝐼))‘ran (𝑅 unitVec 𝐼)) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼))) | 
| 39 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(LBasis‘(𝑅
freeLMod 𝐼)) =
(LBasis‘(𝑅 freeLMod
𝐼)) | 
| 40 | 2, 25, 39 | frlmlbs 21818 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼))) | 
| 41 | 1, 40 | sylan 580 | . . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼))) | 
| 42 | 5, 39, 35 | lbssp 21079 | . . . . . . . . 9
⊢ (ran
(𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))) | 
| 43 | 41, 42 | syl 17 | . . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
((LSpan‘(𝑅 freeLMod
𝐼))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))) | 
| 44 | 38, 43 | eqtr3d 2778 | . . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))) | 
| 45 | 34, 44 | eqtrid 2788 | . . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = (Base‘(𝑅 freeLMod 𝐼))) | 
| 46 | 45 | 3adant3 1132 | . . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) →
((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = (Base‘(𝑅 freeLMod 𝐼))) | 
| 47 | 32, 46 | sseqtrrd 4020 | . . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅))) | 
| 48 |  | un0 4393 | . . . . 5
⊢ (𝑋 ∪ ∅) = 𝑋 | 
| 49 |  | drngnzr 20749 | . . . . . . . . . . . . 13
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | 
| 50 | 49 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing) | 
| 51 | 12, 50 | eqeltrrd 2841 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
(Scalar‘(𝑅 freeLMod
𝐼)) ∈
NzRing) | 
| 52 | 4, 51 | jca 511 | . . . . . . . . . 10
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)) | 
| 53 | 35, 15 | lindsind2 21840 | . . . . . . . . . . 11
⊢ ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ 𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) | 
| 54 | 53 | 3expa 1118 | . . . . . . . . . 10
⊢
(((((𝑅 freeLMod
𝐼) ∈ LMod ∧
(Scalar‘(𝑅 freeLMod
𝐼)) ∈ NzRing) ∧
𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ 𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) | 
| 55 | 52, 54 | sylanl1 680 | . . . . . . . . 9
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ 𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) | 
| 56 | 37 | fveq1d 6907 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
((LSpan‘(𝑅 freeLMod
𝐼))‘(𝑋 ∖ {𝑦})) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))) | 
| 57 | 56 | eleq2d 2826 | . . . . . . . . . 10
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ↔ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))) | 
| 58 | 57 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ 𝑋) → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ↔ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))) | 
| 59 | 55, 58 | mtbid 324 | . . . . . . . 8
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ 𝑋) → ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))) | 
| 60 | 59 | ralrimiva 3145 | . . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑦 ∈ 𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))) | 
| 61 | 60 | 3impa 1109 | . . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑦 ∈ 𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))) | 
| 62 | 10, 11 | ismri2 17676 | . . . . . . . 8
⊢
(((LSubSp‘(𝑅
freeLMod 𝐼)) ∈
(Moore‘(Base‘(𝑅
freeLMod 𝐼))) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦 ∈ 𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))) | 
| 63 | 8, 31, 62 | syl2an 596 | . . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦 ∈ 𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))) | 
| 64 | 63 | 3impa 1109 | . . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦 ∈ 𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))) | 
| 65 | 61, 64 | mpbird 257 | . . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))) | 
| 66 | 48, 65 | eqeltrid 2844 | . . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∪ ∅) ∈
(mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))) | 
| 67 |  | simpr 484 | . . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝐼 ∈ Fin) | 
| 68 | 25 | uvcendim 21868 | . . . . . . . . 9
⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ Fin) → 𝐼 ≈ ran (𝑅 unitVec 𝐼)) | 
| 69 | 49, 68 | sylan 580 | . . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝐼 ≈ ran (𝑅 unitVec 𝐼)) | 
| 70 |  | enfi 9228 | . . . . . . . 8
⊢ (𝐼 ≈ ran (𝑅 unitVec 𝐼) → (𝐼 ∈ Fin ↔ ran (𝑅 unitVec 𝐼) ∈ Fin)) | 
| 71 | 69, 70 | syl 17 | . . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝐼 ∈ Fin ↔ ran (𝑅 unitVec 𝐼) ∈ Fin)) | 
| 72 | 67, 71 | mpbid 232 | . . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ Fin) | 
| 73 | 72 | olcd 874 | . . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑋 ∈ Fin ∨ ran (𝑅 unitVec 𝐼) ∈ Fin)) | 
| 74 | 73 | 3adant3 1132 | . . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ Fin ∨ ran (𝑅 unitVec 𝐼) ∈ Fin)) | 
| 75 | 9, 10, 11, 21, 24, 30, 47, 66, 74 | mreexexd 17692 | . . 3
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∃𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼)(𝑋 ≈ 𝑓 ∧ (𝑓 ∪ ∅) ∈
(mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))) | 
| 76 |  | simpl 482 | . . . . 5
⊢ ((𝑋 ≈ 𝑓 ∧ (𝑓 ∪ ∅) ∈
(mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))) → 𝑋 ≈ 𝑓) | 
| 77 |  | ovex 7465 | . . . . . . 7
⊢ (𝑅 unitVec 𝐼) ∈ V | 
| 78 | 77 | rnex 7933 | . . . . . 6
⊢ ran
(𝑅 unitVec 𝐼) ∈ V | 
| 79 |  | elpwi 4606 | . . . . . 6
⊢ (𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) → 𝑓 ⊆ ran (𝑅 unitVec 𝐼)) | 
| 80 |  | ssdomg 9041 | . . . . . 6
⊢ (ran
(𝑅 unitVec 𝐼) ∈ V → (𝑓 ⊆ ran (𝑅 unitVec 𝐼) → 𝑓 ≼ ran (𝑅 unitVec 𝐼))) | 
| 81 | 78, 79, 80 | mpsyl 68 | . . . . 5
⊢ (𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) → 𝑓 ≼ ran (𝑅 unitVec 𝐼)) | 
| 82 |  | endomtr 9053 | . . . . 5
⊢ ((𝑋 ≈ 𝑓 ∧ 𝑓 ≼ ran (𝑅 unitVec 𝐼)) → 𝑋 ≼ ran (𝑅 unitVec 𝐼)) | 
| 83 | 76, 81, 82 | syl2anr 597 | . . . 4
⊢ ((𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) ∧ (𝑋 ≈ 𝑓 ∧ (𝑓 ∪ ∅) ∈
(mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼)) | 
| 84 | 83 | rexlimiva 3146 | . . 3
⊢
(∃𝑓 ∈
𝒫 ran (𝑅 unitVec
𝐼)(𝑋 ≈ 𝑓 ∧ (𝑓 ∪ ∅) ∈
(mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼)) | 
| 85 | 75, 84 | syl 17 | . 2
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼)) | 
| 86 | 69 | ensymd 9046 | . . 3
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ≈ 𝐼) | 
| 87 | 86 | 3adant3 1132 | . 2
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ran (𝑅 unitVec 𝐼) ≈ 𝐼) | 
| 88 |  | domentr 9054 | . 2
⊢ ((𝑋 ≼ ran (𝑅 unitVec 𝐼) ∧ ran (𝑅 unitVec 𝐼) ≈ 𝐼) → 𝑋 ≼ 𝐼) | 
| 89 | 85, 87, 88 | syl2anc 584 | 1
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ 𝐼) |